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ABSTRACT 

Until recently, computer simulations of helicopter rotor dynamics have employed 
equations of motion that have been linearized or simplified. These modified equations of 
motion did not allow for the evaluation of nonlinear material properties in the rotor since 
higher order terms in the dynamics had been modified in the simplification process. With 
recent advances in both computer simulation hardware and symbolic mathematic 
manipulation software, the full nonlinear equations of motion may be utilized in helicopter 
rotor simulations. This dissertation reports on the use of the full nonlinear equations of 

motion in the analysis of rotor blade lead/lag motion and its effect on rotor hub and rigid 
body fuselage motion. Nonlinear modeling methods are implemented using Maple 

symbolic mathematic manipulation software and Matlab and Simulink computer 
simulation environments. Results are compared to the RAH-66 Comanche Froude scale 

wind tunnel article and new methodologies evaluated in the search for a damperless rotor 
system that is free of ground and air resonance mechanical instabilities. 
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I.   INTRODUCTION 

One of the goals of this research was to develop a 

flexible computational tool to analyze the dynamic and 

aeromechanical behavior of advanced technology coupled 

rotor/fuselage systems. Initially, a series of programs were 

developed utilizing the symbolic processing software, 

Maple®, the computational software, Matlab®, and the 

simulation software, Simulink®, by LT Christopher Robinson 

[Ref. 1]. It was desired that the computational tool be 

simple to understand and lend itself to easy reprogramming 

by any user knowledgeable in the field of dynamics and in 

the use of the software programs mentioned. It was also 

desired that the developed programs allow for a sufficient 

capability so that the effects of introducing advanced 

technologies into rotor system designs could be accurately 

modeled. This dissertation reports on further advances in 

this computational tool development, and analysis based on 

these new tools. The nonlinear rotor simulation that was 

developed as part of this research is a very powerful tool 

for analyzing rotors that do not have multiple load paths to 

the hub. 

Historically, rotor analysis was performed using 

approximate equations of motion. In order to reduce the 

complexity of the computer code involved and to reduce 



computation  times,  these  equations were  simplified by- 

eliminating higher order terms [Refs. 2,3]. Subsequently, 

either linearized equations were used or select nonlinear 

terms were retained using a ranking system or ordering 

scheme, such as that used by Friedmann, [Ref. 4]. 

As hingeless helicopter main rotors became more 

commonplace, a need arose for a rotor simulation tool that 

would accurately model nonlinear mechanical properties so 

that these nonlinearities could be exploited. It was desired 

to develop an analysis tool that would be able to reliably 

model the effects of nonlinearities in the rotor and hub 

mechanical and geometric parameters. For this reason, 

Robinson and Wood developed a utility for creating the full 

nonlinear, coupled equations of motion. Robinson utilized 

the symbolic manipulation software Maple® for this purpose. 

Current trends in helicopter technology and 

manufacturing have favored the use of bearingless rotor 

designs that make use of advanced composite materials. These 

designs offer many advantages over more conventional 

articulated rotors in reliability and maintainability. A 

potential payoff from the successful use of the technologies 

mentioned above is the damperless rotor; a design that 

offers major returns in the form of decreased rotor system 

weight, reduced parts count, and reduced maintenance 

requirements. 



Composites and other advanced materials that can be 

applied for a damperless rotor make modeling rotor behavior 

more difficult, however. These materials have the potential 

for exhibiting nonlinear behavior that cannot be accurately 

modeled without utilizing the full nonlinear equations of 

motion for the system. 

The goal of this dissertation is to examine alternative 

designs for a damperless helicopter rotor. This effort met 

with success by taking advantage of nonlinear stiffness in 

the blade root end to avoid divergent motion in the rotor 

blade lead/lag degrees of freedom. This oscillatory 

instability is better known as ground and air resonance 

instability. 





II.  REVIEW OF WORK PERFORMED BY ROBINSON 

For background on progress reported in this 

dissertation, it is important to first review LT Robinson's 

thesis work. This work preceded that of the author. Tasks 

performed by Robinson included the formulation of a Maple® 

based symbolic processing worksheet that formulated 

nonlinear equations of motion given energy expressions for 

helicopter rotor model degrees of freedom. Simulink® based 

computer simulations were developed from the equations of 

motion derived by the symbolic processor for a simple three 

bladed rotor based on that used by Coleman [Refs. 5,6]. 

Robinson, Wood, and King reported on a new method for 

formulating the full non-linear equations of motion for 

ground/air resonance stability analysis of helicopter rotor 

systems [Ref. 7]. The full set of non-linear equations was 

developed by Lagrangian approach using symbolic processing 

software for expanding the equations. The symbolic software 

was further utilized to automatically convert the equations 

of motion into C or Fortran source code formatted for 

numerical integration. Simulink® then applied a Runga-Kutta 

integration scheme to generate time history plots of blade 

and fuselage motion. Damping levels were determined from the 

time history simulations by a Matlab® program, which used 



the Moving Block Technique for establishing damping levels 

from the coupled rotor-body response. 

Robinson's model, based on that of Coleman, is shown in 

Figure 1, [Ref. 1]. 

Figure 1 - Simplified Rotor Model [After Ref. 1] 

Robinson verified his symbolic Lagrangian derivation by 

comparing his results to Coleman's. Figure 2 shows results 

of a comparison of the two methods for an unstable case 

where a moderate amount of damping has been added to both 

rotor blades and fuselage. 



1.5 
Comparison of Simulation Results to Solution of Coleman Equations 

Simulation 
Colema i 

0.1 0.2 0.3 0.4 0.5 
time (sec) 

0.6 0.7 0.8 0.9 

Figure 2 - Validation of simple model with solution of Coleman's linearized model 

In Figure 2, Robinson shows excellent agreement between 

the two solutions with departure occurring only when 

displacements are very large. This is to be expected since 

the simulation model of this paper does not assume small 

angle theory whereas the Coleman-Feingold-Bramwell model 

does. 

For a more quantitative proof of the validity of the 

new method, it was tested against Deutsch's Criteria [Ref. 

8]. Based on Coleman's analysis, Deutsch showed that the 

product of the hub (landing gear) damping and the blade 

lead/lag damping must be greater than a prescribed value to 



collapse the band of unstable blade frequencies: X X$ > X3 

(p-1). The following Figure shows results of successive 

sweeping across the unstable band using the new nonlinear 

analysis. The respective cases represent those where 

Deutsch's prescribed damping is applied (D=1.0), and other 

cases where the damping is greater than that required by 

Deutsch (D=l.l) or less (D=0.8, 0.9). For each case 

considered, the center of instability is seen to be the 

point of minimum value on the given line. With the new 

nonlinear analysis, Deutsch's criteria applied at the center 

of instability provides nearly a neutrally stable result 

with a near zero damping ratio. Deutsch's criteria is 

conservative in that the critical point for his criteria, or 

bucket of each curve, still shows positive damping when 

analyzed with the NPS simulation. Three years after 

Robinson, Rafanello verified the conservative nature of 

Deutsch's criteria by matching simulation results to Wood's 

HSS-2 ground resonance analysis, [Refs. 9, 10]. 



Moving Block Results Parametized With Deutsch's Criteria 

o 
4—1 
Co 

CH   U.L 
en 

Q 

1.3 1.4 
Omega / OmegaO 

1.5 1.6 

Figure 3 - Quantitative validation of simple model against Deutsch Criteria 
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III. DAMPERLESS ROTOR DEVELOPMENT 

A.   BACKGROUND 

Ground and air resonance are particularly destructive 

mechanical instabilities that can occur in helicopters with 

fully articulated, bearingless, or hingeless main rotor 

designs. The phenomenon of ground/air resonance is the 

result of coupling between rigid body motions of the 

fuselage on its landing gear, or in the air, and lead-lag 

oscillations of the rotor blades in their plane of rotation. 

When it occurs, the instability can build to destructive 

proportions in a matter of seconds. 

The equations of motion describing the dynamics of the 

coupled rotor-fuselage system are nonlinear and generally 

quite complex even for simplified models. The fundamental 

theory of air and ground resonance is credited to the 

classic work of an NACA engineer, Robert Coleman, who first 

published his theory in the early 1940's [Ref. 5]. As 

computational power improved with the evolution of digital 

computers, more general techniques for analyzing rotor 

system stability were developed. 

As stated earlier, due to the complexity of the 

equations of motion, ground and air resonance analysis was 

historically restricted to linear analysis until very 

recently.  This frequently restricted the scope of many 

11 



studies and potential solutions. With a few noteworthy- 

exceptions, nonlinearities in ground and air resonance 

research programs have not typically investigated beyond 

traditional damping methods, such as hydraulic damping. 

This chapter entitled "Damperless Rotor Development" 

investigates various options for damperless rotors that 

maintain some margin of stability, or avoidance of ground 

and air resonance without the employment of auxiliary 

lead/lag dampers. 

In general, rotorcraft lag dampers are heavy, expensive 

items that can require extensive maintenance. By developing 

rotors that do not require these dampers, payoffs in 1) 

reduced maintenance time and cost, 2) reduced hub complexity 

and parts count, 3) reduced rotor drag, and 4) reduced rotor 

signature could potentially be reaped. 

An effort in the elimination of these dampers applies 

directly to a famous quote from the father of the business 

jet, Bill Lear, "Strive for design simplicity: you never 

have to fix anything you leave out." 

B.   GROUND RESONANCE FUNDAMENTALS 

Ground and air resonance instability is centered around 

blade/hub interactions at one of the fuselage rigid body 

modes. The rotor acts as a forcing function, producing 

undesired responses or even resonance in the fuselage 

12 



dynamics. The rotor changes the frequency of mechanical 

vibrations as they transfer from the rotating frame down 

into the non-rotating frame. If the blades have a primary 

mode in lead/lag at some frequency G0lag, and Q. is the 

frequency of rotation of the rotor system, shears are 

transmitted through the mast and into the non-rotating hub 

at frequencies (Q±colag) . The progressing mode (Q+colag) is 

heavily damped and normally plays no role in ground 

resonance. The regressing mode (&~G)lag) provides the 

potential for destruction, however. If one of the fuselage 

rigid body modes is near in frequency to the regressing mode 

and there is insufficient damping, blade lead/lag and 

fuselage displacement amplitudes can build to destructive 

proportions. While the helicopter is still in contact with 

the ground, the fuselage roll mode is often close in 

frequency to the regressing lag mode, normally in the 2-5 Hz 

range. 

In general, the spectrum of classical ground resonance 

to air resonance could be referred to as "aeromechanical 

stability." Since articulated rotors normally do not 

experience air resonance, aerodynamics and flap degrees of 

freedom play little roll in ground resonance. Therefore, 

articulated rotors may be modeled using Coleman's methods. 

Hingeless and bearingless rotors experience more coupling in 

the blade degrees of freedom. In addition, body pitch and 

13 



roll coupling through flap moments of cantilever blades can 

result in air resonance. Bearingless and hingeless rotors, 

where Coleman's equations are not sufficient to model the 

problem, require more sophisticated models. Flap degrees of 

freedom and aerodynamics were not used to model the Coleman- 

like rotor models in this report. 

In the typical rotor, there are, in fact, significant 

nonlinearities. Especially noteworthy are friction in 

dampers and oleos that sometimes result in the appearance of 

instability following a moderately large external force 

excitation. Thus, the typical scenario for ground resonance 

is initiated by the fuselage being perturbed by some 

external force such as a gust, a rolling ship deck, uneven 

terrain while ground taxing, or combat damage. The fuselage 

motion, typically in roll, induces asymmetrical lag motion 

in the rotor blades. This asymmetrical response shifts the 

combined CG of the rotating components away from the center 

of rotation, resulting in an unbalance in the centrifugal 

force seen by the rotor mast. The unbalanced centrifugal 

force results in increased fuselage motion, compounding the 

problem. This cycle is depicted in flowchart form in Figure 

4. 

14 
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Figure 4 - Ground resonance flowchart 

A typical fuselage on its landing gear has a roll mode 

frequency in the proximity of the regressing mode frequency 

of the rotor system. If these modes are sufficiently near to 

each other and there is insufficient system damping, ground 

resonance can occur. 
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A plot of hub motion for a typical case of ground 

resonance can be found in Figure 5. Note the spiraling 

divergence of the hub center of mass in the horizontal 

plane. 

Hub Motion in the Horizontal Plane 

0.2        0.4        0.6        0.8 

Hub X displ (ft) 

Figure 5 - Ground resonance hub motion 

Following the work of Robert Coleman, a more complete 

work, based on his analysis, was collected and published by 

Coleman and Feingold [Ref. 6] . Deutsch supplemented 

Coleman's work by establishing a criterion for system 

damping necessary to eliminate ground resonance [Ref. 8]. 

16 



Numerous  other  researchers  have  contributed  to 

understanding the ground resonance problem since Coleman, 

Deutsch,  and  Feingold.  The  papers  following  Coleman 

essentially completed the investigation of the linearized 

system for ground resonance. Hammond applied Floquet theory, 

but to consider the case of unequal lead/lag damping among 

the blades [Ref. 11]. (The NPS rotor simulation can also 

apply unequal  lead/lag damping values  at each blade.) 

Tongue, Flowers, Jankowski, Tang, Dowel1, and most recently, 

Gandhi and Chopra  [Refs.  12-14]  investigated nonlinear 

effects in blade and fuselage damping. Ormiston explored 

linear aeromechanical stability of rigid blades with spring 

restrained hinges, and later, investigated rotor modeling 

with a sophisticated finite element analysis code and 

various nonlinear damping models [Refs. 15, 16]. 

C.   OBJECTIVES 

The objective of the present work is to explore the 

potential of eliminating the snubber-damper or damper on 

hingeless rotor designs and replace it with a flexbeam that 

has been modified to possess nonlinear properties. Thus, the 

purpose is to employ the nonlinear properties of the 

flexbeam to introduce nonlinear dynamic characteristics that 

will replace unbounded instability with small amplitude 

limit  cycle  oscillations,   and  prevent  catastrophic 

17 



destruction of the helicopter. This work is well suited to 

the new NPS rotor simulation analysis that can accurately 

model nonlinear mechanical properties. 

The significance of this new research is that allowance 

of nonlinearities at the blade root may result in an 

acceptable bounded response in the parameter region where 

linear theory would predict instability, or may introduce 

new regions of unacceptable response in the parameter region 

where linear theory would predict stability. Evidence of the 

latter may be found in the numerous aircraft lost in the 

documented cases of ground resonance. Modern soft-inplane 

rotors, such as that first introduced on the BO-105, have 

the additional possibility of encountering this lead lag 

instability in flight [Ref. 17]. 

The work reported here attempts to abandon the use of 

auxiliary damping methods in the rotating system as a means 

of eliminating ground and air resonance. Only the damping 

inherent to the typical landing gear system and the built-in 

structural damping of the flexbeam in bending are utilized 

in the cases shown. The ground/air resonance cycle is 

detuned by shifting the blade natural frequency in lead/lag 

to avoid the coalescence of the regressing mode with the 

fuselage rigid body modes. A nonlinear flexbeam is 

characterized by change in stiffness properties with change 

in  amplitude.  Therefore,  as  blade  lead/lag  amplitude 

18 



changes, there is a corresponding change in its lead/lag 

frequency. This method differs from some previous methods of 

preventing ground resonance in that coalescence is avoided 

through natural frequency shift instead of dominating the 

dynamics of the system through damping. In the case of this 

thesis, this is accomplished by introducing a classic 

nonlinear stiffness known as Duffing-type nonlinear 

stiffness at the blade root. 

D.   INTRODUCTION TO DUFFING 

1.   Single Degree of Freedom Duffing Systems 

For the first part of the investigation, an exploration 

of the one degree of freedom Duffing system is considered to 

understand the effects of cubic stiffness for a simple 

harmonic  oscillator.  With  damping  excluded,  Duffing's 

equation can be expressed as: 

1 3 x + C0QX + hx   - Gcos(co,t) 

where the driving function is GcosCo^t). The coefficient, G, 

is the ratio between the amplitude of the force and the mass 

of the moving system. Coefficients <ü0
2 and h depend on the 

parameters of the system, with the Duffing coefficient, h, 

being positive for a "hardening spring" and negative for a 

"softening spring." 
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One of the interesting phenomena appearing in systems 

governed by Duffing's equation is that, in addition to 

generating harmonics of the driving frequency, discontinuous 

jumps in amplitude occur as the frequency of the exciting 

force is either increased of decreased at a constant rate. 

A simple one degree of freedom Duffing spring mass 

system is shown in Figure 6. 

5 
x(t) 

^C^^ü ■%#■:. *i 

*v~-;?i->ii5,'3C;:Ss? *>" 

F * sin(w*t) 

Figure 6 - Simple Duffing system 

A simple simulation was written to obtain time 

histories for this system with user supplied mass, linear 

damping, linear stiffness, forcing amplitude, forcing 

frequency, and Duffing stiffness terms. The Simulink® 5th 

order Runge-Kutta integration scheme is used here. 

20 



An example time history that illustrates the effect of 

exciting frequency (both increase and decrease) is presented 

in Figure 7. 

Q -10 

Duffing System Time Histories 

10 20 30 40 50 60 70 80 

Time (sec) 

Figure 7 - Duffing time history 

60    70    80 

The inputs for this time history are contained in the 

following table: 

Table 1 - Table caption 

Linear stiffness = 4000 lb/in Mass = 6 slugs 

Duffing stiffness = 100 lb/inJ Damping =14 lb*s/in 
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Driving Force 1/2 amplitude = 500 lb 

The top subplot in Figure 7 is the time history of the 

mass displacement with a stiffening Duffing spring included 

in the dynamics. The second subplot in this figure is the 

driving frequency used in the top plot as a function of 

time. The system goes through resonance both as the driving 

frequency is increased and again as it decreases. 

If one takes this time history and transforms it as a 

function of driving frequency, instead of time, 

dissimilarities in the two resonances can easily be 

discerned, as shown in Figure 8. 
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Mass Deflection Time Histories 

3 4 5 6 7 

Frequency (Hz) 
10 

Figure 8 - Duffing system resonance 

The system reaches resonance as the frequency is 

increased, but unlike a linear system that gradually reduces 

the displacement amplitude, in this case, the Duffing system 

experiences a sudden drop-off in displacement amplitude. 

Then, as the driving frequency is decreased from a value 

above resonance, the system does not follow the same path in 

resonance amplitude, but reaches a relative maximum in 

displacement  at  a  frequency  less  than  the  case  for 

23 



increasing driving  frequency.  These  sudden  changes  in 

displacement amplitude are referred to as "Duffing jumps." 

Shown in Figure 9 is a nonlinear resonance curve for a 

hardening Duffing spring system, reproduced from Cunningham 

[Ref. 18]. A typical linear resonance curve has been 

superimposed on Cunningham's original figure. The resonant 

frequency for the linear system would not change, but remain 

fixed at C00. The physical reason for these jumps can be 

visualized in this plot of the resonance of the nonlinear 

Duffing system. 

As the driving frequency is increased from the left on 

the plot, the system displacement amplitude grows until the 

system reaches point A. Further increase in the driving 

frequency drops the displacement amplitude down to B, a 

Duffing jump. 

As the driving frequency is decreased from the right, 

the system drives right through point B to point C, where 

the solution becomes unstable. As the driving frequency is 

decreased lower than that found at point C, the only stable 

displacement amplitude becomes point D, another Duffing 

jump. 
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Figure 9 - Duffing resonance frequencies [After Ref. 18] 

Unlike the linear system, the Duffing system increases 

the natural frequency as a function of displacement 

amplitude. For larger displacements, the resonance frequency 

increases due to this stiffening. The relation for this 

frequency shift is derived by Cunningham as: 

\K    3KdA
7 

0)=J— + • d 

}M 4 

It should be noted that if the sign of h is allowed to 

reverse, h<l, (softening spring), the same kind of phenomena 

exists. The primary difference is that now the nonlinear 
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resonance curve is skewed towards the lower, rather than 

higher frequencies. Since ground and air resonance are 

determined by coupling of the rotor blades with lead/lag 

motion in the plane of rotation, it was hoped to take 

advantage of these sudden decreases in displacement 

amplitude. This decrease in blade lead/lag motion would 

subsequently reduce the severity of the offset centrifugal 

force on the hub. The employment of Duffing in the rotor 

lead/lag dynamics did, in fact, reduce the susceptability of 

the rotor to ground and air resonance, but not due to the 

Duffing jumps as hypothesized. The shift in natural 

frequency detuned the ground resonance sequence of events, 

instead. 

2.   Multiple Degree of Freedom Duffing Systems 

Since the rotor system to be simulated was a three 

bladed design, investigations in a three degree of freedom 

Duffing system were also performed. A depiction of this 

system may be found in Figure 10. The possibility existed in 

this multiple DOF nonlinear system that reductions in 

resonant displacement amplitude could be achieved through 

coupling between the three degrees of freedom in the 

helicopter rotating frame. 
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Figure 10 - Three DOF Duffing system 

As shown, the Duffing spring/mass system described 

earlier was expanded into a three mass system. Each mass was 

linked by adjacent linear springs, linear dampers, and 

Duffing springs. An example time history of this three DOF 

system follows. The input parameters are the same as the one 

DOF case shown previously. The three resonant peaks are 

clearly visible. 
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Figure 11 - Three DOF Duffing system time histories 

In general, no substantial changes in the dynamics in 

the neighborhood of the first resonant frequency of this 

system were noted over the one DOF system. The second and 

third modes were most effected by variation in the Duffing 

terms of the system. By increasing the Duffing terms, the 

higher order modes tended to flatten out, showing resonant 
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behavior over larger ranges of the driving frequency. Three 

plots showing this trend are shown in Figure 12, first the 

linear system with no Duffing stiffness, with an 

intermediate Duffing coefficient, then with a large Duffing 

coefficient. 

Increasing Duffing Stiffness in 3 DOF Duffing System 
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Figure 12 - Effect of increasing Duffing stiffness in three DOF system 
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Since the ground and air resonance problem is more 

closely associated with the lower resonant frequencies of 

the rotor, no advantage in the ground/air resonance problem 

was gleaned from these higher order Duffing system analyses. 

The shift in resonance frequencies, however, still showed 

promise in rotor applications, as discussed in the following 

section. 

E.   DUFFING ROTOR SYSTEMS 

As discussed previously, ground and air resonance are 

effectively driven by two phenomena: 1) the proximity of 

rotor and hub vibratory modes, and 2) the ability of system 

damping to maintain reasonable DOF amplitudes when 

approaching resonance. Damping, the traditional means of 

solving the ground resonance problem, can dominate the 

system dynamics through the velocity terms. Except for high 

damping ratios, this approach does little to shift system 

modal frequencies, however. 

The method of passive rotor stability presented here 

utilizes a nonlinear Duffing type spring to address the 

coalescence part of the problem, while attempting to settle 

for whatever damping is inherent to the system. This 

approach eliminates the need for auxiliary damping devices 

for the blade lag degrees of freedom. 
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Coleman Model 

Figure 13 - Rotor with Duffing stiffness in the lead/lag dynamics 

Duffing stiffness is added into the Coleman model as 

depicted in Figure 13. Both linear and nonlinear rotary- 

springs plus structural damping are incorporated across the 

blade lag hinge. Stiffness and damping values can be defined 

separately for each blade to allow for asymmetric blade 

property investigations. 

The addition of a hardening Duffing spring increases 

the lead/lag natural frequency of the blade as a function of 

blade lead angle, detuning the resonance. As blade 

amplitudes increase in a typical ground resonance sequence 

of events, the regressing mode is driven to a lower 

frequency as the blade natural frequency in lag is increased 

due to stiffening. This effectively breaks the sequence of 

events previously depicted in flowchart form. This shift in 
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the rotor's regressing mode puts the blade lag motion in a 

limit cycle instead of letting displacements increase 

without bound. For the case of soft in-plane rotors that 

drive through the ground resonance region of instability 

upon rotor engagement, upon leaving this region, the 

dynamics return to what one would expect from a soft in- 

plane rotor at rotor speeds above the region of instability. 

Outside the region of instability, the linear terms once 

again dominate the dynamics, with little or no ill effects 

of the Duffing stiffness seen in the dynamics. 

1.   Results of the Baseline Duffing Rotor 

The NPS nonlinear rotor simulation was utilized in the 

following investigation. To provide the most robust 

application of Duffing springs to the ground resonance 

problem, simulations are performed at the center of the 

region of instability unless otherwise stated. This baseline 

case is of a rotor with the following values: 

Table 2 - Table caption 

Q. =  25.0  rad/s 
(239  RPM) 

M^  =   180.0   si 
(5800  lbs) 

Mfclaae    =     6.0     Si 
(193   lbs) 

e =  0.5  ft R.xaaecc =  10.5  ft G)lag /  Q =  0 . 6 

Structural Damping in Lag =  2.0% 

Viscous Damping in Hub = =    2.0% 
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Time histories of blade and hub displacements for this 

rotor with no Duffing stiffness employed are illustrated in 

Figure 14 and Figure 15. The first plot shows the blade lag 

angles clearly diverging from their initial zero 

displacement angles. 

Baseline Case w/o Duffing Spring 

3 4 5 6 7 

Time (sec) 

Figure 14 - Baseline case, blade lead angles without Duffing stiffness 

The X direction of the isotropic hub motion is plotted 

in Figure 15. The hub has an initial lateral displacement of 

0.2 feet to initiate the ground resonance behavior of the 
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system. Like the blade plot above, the hub motion clearly is 

subject to an oscillatory divergence. 

Baseline Case w/o Duffing Spring 

2 3 4 5 6 7 8 

Time (sec) 

Figure 15 - Baseline case, hub lateral displacement without Duffing stiffness 

2.   Baseline Case with Duffing Stiffness Added 

The next set of time histories gives results for the 

same rotor, but with Duffing spring terms added. The ratio 

of the Duffing stiffness coefficient to the linear stiffness 

coefficient is 20.0 for Figure 16 and Figure 17. 
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Baseline Case w/ Duffing Spring 

3 4 5 

Time (sec) 

Figure 16 - Baseline case, blade lead angles with Duffing stiffness 

The nonlinear stiffness clearly keeps the previously- 

unstable blade lag response in check. Since the rotor for 

this case is linearly unstable, a limit cycle of 

approximately 8 degrees in the blade lag motion is produced. 

A plot of the hub motion follows. Limit cycle motion, 

in general, is not considered desirable because it results 

in additional structural vibration in the non-rotating 

aircraft components. The amplitude of the lateral motion 
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depicted in this plot is sufficiently large that concerns 

over hub vibration levels were raised. 

Baseline Case w/ Duffing Spring 

2 3 4 5 6 7 8 

Time (sec) 

Figure 17 - Baseline case, hub lateral displacement with Duffing stiffness 

The lateral vibrations experienced by the hub are 

plotted in Figure 18. The derivative of the hub velocity was 

taken numerically to obtain the hub lateral vibration data 

plotted. Since numerical derivation of a sampled signal 

tends to increase the effect of noise in the data, this plot 

is provided as a means of discerning the overall vibration 
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levels,  not as  an explicit means  of  calculating  the 

vibration time history. The final vibratory levels are on 

the  order  of  one-half  the  acceleration  of  gravity. 

Vibrations of this magnitude might be larger than desired, 

even for transient ground operations. 

Baseline Case w/ Duffing Spring 

3 4 5 6 7 

Time (sec) 

Figure 18 - Hub lateral vibration, baseline case with Duffing stiffness 
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3.   Baseline Case with Increased Rotor Speed - Above 
the Region of Instability 

The case that produced the unacceptable vibration 

levels presented above is one that was originally unstable 

and represents a worst-case operating regime for the rotor: 

the center of the region of instability. Even if the 

nonlinear stiffness was included in the rotor design, it is 

doubtful a production rotor would be designed to operate at 

its center of instability. 

Most soft in-plane rotors are designed to operate with 

rotor speeds slightly above the region of instability. The 

rotor drives through the unstable region on engagement and 

disengagement. It is also possible to encounter these low Q 

regimes during extreme maneuver, maintenance checks or as 

the result of a system failure. 

For the baseline rotor presented here, the blade center 

of mass is at a radial location of 10.5 feet; it roughly 

represents a 20-ft radius rotor. For this size blade, 25 

rad/sec (239 RPM) is an unusually low operating speed. If Q 

is increased to approximate a 650 ft/sec tip speed in a 

hover, Q.  would increase to 32.5 rad/sec (310 RPM). 

To examine the effects of the inclusion of nonlinear 

stiffness at the higher rotor speed, plots of the blade and 

hub motion are provided in Figure 19 and Figure 20 for 

comparison with the linear rotor shown previously. 
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Base Case w/ Duffing & Incr Omega 

3 4 5 

Time (sec) 

Figure 19 - Blade lead angles, increased rotor speed with Duffing stiffness 

Since the rotor is now being operated with a rotor 

speed slightly above the region of instability, the hub and 

blade displacements are less for the same initial 

conditions. The lag limit cycle amplitude is reduced from 8 

degrees all the way to 0.3-degrees. 
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Base Case w/ Duffing & Incr Omega 

Time (sec) 

Figure 20 - Hub lateral displacement, increased rotor speed with Duffing stiffness 

The hub lateral displacement saw a substantial 

decrease, as well. The hub limit cycle amplitude for the 

Duffing rotor drops 80% from the value it had at the lower 

rotor speed. 

For comparison, the hub lateral vibrations for the 

Duffing rotor at both rotor speeds are plotted in Figure 21. 

The vibration amplitude drops almost an order of magnitude 
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to less than 0.05 g's, a level that is certainly in the 

window of today's production rotorcraft. 

Base Case w/ Duffing & Incr Omega 

Time (sec) 

Figure 21 - Hub lateral vibration comparison 

F.   GROUND RESONANCE ANALYSIS 

1.   Frequency Coalescence 

In the use of nonlinear stiffness to avoid ground and 

air resonance, fundamental questions arise: 1) In what way 

does the stiffness effect the coalescence of the regressing 
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lag mode to the rigid body mode? and 2) Are the restoring 

moments produced of reasonable magnitude? 

Figure 22 is the Coleman Plot of the baseline rotor 

with and without Duffing stiffness included at the blade 

root end. It can be seen from the plot that the linear 

spring only case has coalescence with the hub lateral mode 

at a rotor operating RPM of 239, as depicted earlier in the 

divergent time histories, Figure 14 and Figure 15. With the 

inclusion of the stiffening Duffing spring, the non-rotating 

lag natural frequency is increased due to the increased lag 

displacement. This blade stiffening shifts the regressing 

lag mode away from the hub modal frequency at any operating 

RPM where resonance may occur. The action of the hardening 

Duffing spring keeps the frequency coelesence above the 

instantaneous rotor RPM. 
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Fixed System Fan Plot With Duffing Stiffness 

5- 

  Articulated - No Spring 
  Linear Spring Only 
  Duffing, Zeta = 5 deg 
  Duffing, Zeta = 10 deg 
  Duffing, Zeta = 15 deg 
  Hub Lateral 

1P 

100 150 200 250 

Omega, (RPM) 
300 350 

Figure 22 - Coleman plot of baseline rotor with Duffing stiffness 

It should be noted that Duffing springs of sufficiently 

low magnitude do not stabilize the rotor, in fact, the rotor 

RPM that results in ground resonance is increased slightly 

over the rotor RPM where the linear rotor would experience 

ground resonance. For this reason, the Duffing replacement 

of auxilary lag damping produces less hub motion for rotors 

with a lag frequency in the upper range, 0.6 or 0.7 per rev, 

vice the lower 0.3 per rev range, which produces 

unacceptable hub and blade motion. 
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2.   Comparison with Theory - Baseline Rotor 

A Coleman stability plot for the baseline rotor 

follows. This plot was produced from Matlab® code that was 

modified from Rafanello [Ref. 9]. One can see the region of 

instability between 225 RPM and 266 RPM. This plot is for 

the baseline rotor with no Duffing stiffness employed. 
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Coleman Stability Plot - Baseline Rotor 
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Figure 23 - Coleman plot for baseline rotor 

One can see the duplication of this region of 

instability in the simulation results, Figure 24. This 

stability plot matches the plot from Coleman quite well. The 
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region of instability begins at 225 RPM in similar fashion 

to the theory. The NPS simulation becomes stable at 261 RPM 

where the theory does not predict stability until 266 RPM. 

This difference matches the results found by both Robinson 

and Rafanello in that Coleman's linear analysis, as applied 

by Deutsch, produces slightly conservative stability 

criteria for ground resonance [Refs. 1, 9]. 
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Figure 24 - Baseline rotor region of instability 

45 



3.   Comparison with Theory - Duffing Rotor 

The following Coleman stability plot is for the 

baseline rotor with 8 degrees lag amplitude with a Duffing 

coefficient 20 times the linear stiffness. One might note 

that Coleman's is a linear analysis. This linear analysis is 

applied to the nonlinear Duffing rotor at a single instance 

in time with a specific lead angle, and is not valid at any 

other blade lead angle. One Can immediately see that the 

nominal rotor speed of 239 RPM is now stable. The Duffing 

stiffness in the rotor continuously drives the unstable 

region above the RPM of the rotor. 
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Coleman Stability Plot - Duffing Rotor 
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Omega (RPM) 

Figure 25 - Coleman plot for Duffing rotor 

4.   The Region of Instability - Duffing Rotor 

The overall effects of including Duffing stiffness in 

the lead/lag dynamics can be more easily discerned in Figure 

26. Hub lateral stability at a variety of rotor speeds is 

plotted for four different Duffing blade stiffnesses. The 

introduction of Duffing stiffness at 10 times the linear 

stiffness greatly increases overall hub motion stability, 

but does not stabilize the rotor. A Duffing stiffness just 

over 30 times the linear stiffness would provide a stable 

baseline rotor for all rotor speeds. 
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Hub Damping As A Function Of Omega 
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Figure 26 - Change in region of instability with Duffing stiffness included 

It should be noted that in Figure 26 that the damping 

values plotted on the Y-axis are linear approximations for 

damping obtained from a nonlinear system time history (for 

all but the Kd/K=0.0 line). The Hilbert transform method was 

used.to determine damping from the hub lateral time history 

for each point on the lines depicted. The last 8 seconds of 

a 9 second simulation were used as inputs to the damping 

analysis. Example time histories for the Kd/K=20.0 rotor 
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follow in Figure 27. These plots were taken at the three 

separate rotor speeds labeled. 
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Figure 27 - Example Hub Time Histories 
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5.   Duffing Rotor Effect on Structural Moments 

Figure 28 depicts the blade restoring moment due to the 

combination of linear and nonlinear stiffness as a function 

of blade lag displacement. For the baseline rotor operated 

at the center of instability, the lag amplitude was 

approximately 8 degrees. This condition increases the 

restoring moment less than 50% from the linear spring only 

case. 
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Figure 28 - Lead/lag restoring moments 
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Keep in mind, however, that a blade experiencing these 

increased loads due to root end stiffness encounters no lag 

moments from the now removed auxiliary lag damper. Also, the 

8-degree lead angles seen in the baseline case with Duffing 

stiffness (Figure 16) was for a "worst case" at the center 

of the region of instability. The center of instability is 

an unlikely nominal design RPM for a rotor, even one with 

nonlinear stiffness. For the cases shown with increased Q., 

the blade lead angles were on the order of a degree, which 

shows virtually no additional restoring moment on this plot. 

The addition of Duffing stiffness at reasonable rotor 

speeds, therefore, is not producing blade bending moments 

that current rotor designs do not already handle. 

6.   Stiff-in-Plane? - Duffing Rotor 

In ground resonance analysis, one additional question 

arises: Since a stiffening term is being employed, is the 

rotor becoming stiff-in-plane? A stiff-in-plane rotor is one 

that has a lead/lag natural frequency greater than the 

rotating frequency of the rotor head. For the baseline rotor 

with a rotary spring Duffing stiffness coefficient 20 times 

the linear stiffness coefficient, the rotor only goes stiff- 

in-plane when the blade lag amplitude exceeds 6 degrees at 

239 RPM. For the baseline rotor with Duffing stiffness 

employed, the rotor can go stiff-in-plane. If the rotor is 
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operated off the center of instability, however, it does not 

go stiff-in-plane. 
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Figure 29 - Soft in-plane frequencies at 239 RPM 
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As depicted in Figure 30, in this case, the rotor goes 

stiff-in-plane when the blade lag amplitude exceeds 12 

degrees for this baseline rotor with Duffing stiffness 

employed at 310 RPM. 

At the increased rotor operating speed of 310 RPM, the 

limit cycle lag amplitude was less than a degree. For lead 

angles of this small amplitude, the rotor sees very little 
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migration towards stiff-in-plane from its initial lag 

frequency. Since the exact same baseline rotor is modeled, 

note that the lag natural frequency is changed due to the 

increase in rotor RPM. What was a 0.6 per rev lag frequency 

rotor is now a 0. 6*(239/310)Q = 0.46 per rev lag frequency 

rotor. 

CO 

E 
5° 

M 
CO 

0 0, 
E 
0,0. 

.2o. 

GCo. 

ojo. 

CD 

Lead/Lag Frequencies at Omega = 310 RPM 
 r 1 ^  

•                                                  ..•*"*"*"                  I 

^y' \                                            ^ ****    : 

^■""*           |         ,.-••"■'"**""                       ! 

■.■^■"^-L1 ■_■-■--———JJl^JJ^J»»»»«"»«"' ■■>—»»—>» - 

1-             •           1            X     A    J."             1      J.          1 

... 
Equivalent Articulated 

 —     Linear ningeiess 
      Duffing, Kd / K = 1.0 
      Duffing, Kd/K-10 
       Duffing, Kd / K = 20 

i ■ 

5 10 

Blade Lead Angle, (deg) 
15 

Figure 30 - Soft in-plane frequencies at 310 RPM 
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6.   CHAOS ANALYSIS 

1.   Response to Similar Initial Conditions 

Duffing's equation is well documented in the 

literature. In Ueda [Ref. 19], parameter combinations that 

produce chaotic response from Duffing's equation are 

summarized. Since chaotic response in the blade lag motion 

is undesired, a check of the simulation time histories must 

be completed to rule out chaotic response for the Duffing 

rotor presented in this paper. 

One characteristic of chaotic systems is vastly- 

differing time histories resulting from nearly identical 

initial conditions. Figure 31 is a Poincare section of the 

lateral response for the baseline hub with Duffing 

stiffness. Three initial conditions of hub displacement are 

plotted. The hub response depicted in this plot is not 

chaotic; the sampled points on the phase plane are nearly 

identical for the three cases. The sample frequency for this 

Poincare section is the regressing lag frequency, (Q-colag) . 
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Figure 31 - Poincare section of hub lateral motion 

2.   Poincare Phase Plane and Phase Space Analyses 

In addition, chaotic motion would not follow a 

prescribed form in phase space. Figure 32 is the blade 

lead/lag motion plotted in 3-D phase space with the blade 

lead angle rate on the vertical axis, the lead angle on the 

radial axis, and the phase plane rotated at the lead/lag 

natural frequency. The initial conditions of zero lead angle 

and rate quickly begin to track a predictable path in the 

phase space, showing no tendency towards chaos. 
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Figure 32 - Phase space of blade lead motion 

H.   DROOPING ROTOR STABILITY 

1.   Nonlinear stiffness provides rotor stability for a 
wide range of physical parameters 

Rotor design engineers must insure rotor stability for 

a wide range of operating parameters. The fuselage rigid 

body natural frequency in roll is a strong function of the 
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fuselage inertial properties. Different fuel loads, cargo 

and passenger configurations effect fuselage rigid body- 

natural frequencies. Landing gear properties, such as strut 

cleanliness, strut oleo servicing, and tire inflation can 

also effect these frequencies. The engineer must work to 

obtain a stable rotor under all these conditions. In 

addition to fuselage characteristics changing, rotor blade 

properties can change. Helicopter operators can change trim 

tab and pitch link settings, effecting the way the blade 

tracks. They can also change blade tip weights in the 

dynamic balancing process, which has a strong effect on 

blade inertias. 

Historically, larger lead/lag dampers than were 

necessary were employed in final designs in an attempt to 

maintain rotor stability over all possible operating 

conditions. The dampers were used as an engineering "safety 

net." In Figure 33, the Duffing stiffness in the rotor is 

used as a similar safety net for rotor speed reduction. 

Reduced rotor speeds could be experienced as a result of 

system failure or during maintenance checks, in addition to 

rotor engagement and disengagement. This figure compares a 

rotor with Duffing stiffness to a rotor with linear 

stiffness only. As rotor RPM is reduced, both rotors enter 

the region of instability and experience resonance. The 

linear rotor quickly reaches hub displacement amplitudes 

57 



that could cause catastrophic failure. The Duffing rotor 

encounters smaller hub displacements, avoiding loss of the 

helicopter. In this case, the Duffing stiffness is used as a 

rotor safety feature, avoiding the large hub displacements 

that result in failure as the rotor speed is reduced. 

Decreasing Omega, w/ & w/o Duffing 
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Figure 33 - Reduced rotor speed comparison 

250 240 

58 



IV.  LINEARLY LINKED ROTOR SYSTEMS 

A.   INTRODUCTION 

The helicopter in ground resonance could be compared to 

a simple harmonic oscillator. The rotor acts as the exciting 

force, and the rigid body motion of the helicopter is the 

response. If one desires to avoid resonance, one could take 

one of two approaches to the problem. Frequencies of the 

system could be modified, which would avoid coalescence. 

Either the exciting force frequency (the rotor regressing 

mode) or the oscillator natural frequency (the fuselage 

rigid body natural frequencies) could be changed to avoid 

driving the system into resonance. 

The other approach that could be used is the 

modification of the resonant mode shape. Changing the mode 

shape naturally changes the mode's resonant frequency. By 

linking the blades together, the mode shapes of the blades' 

lead/lag motion are changed. Modifying the mode shape, in 

turn, alters the blade natural frequency in lead/lag and the 

regressing mode of the rotor. Therefore, by linking the 

blades, the potential exists to avoid ground/air resonance 

by detuning the rotor-body dynamics, thus avoiding ground 

and air resonance in a similar manner to the nonlinear 

stiffness approach already discussed. 
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B.   ROTOR WITH LINKED BLADES 

A four bladed rotor simulation was developed similarly 

to the Coleman-like three bladed rotor used in the 

damperless rotor investigations and the Comanche five bladed 

rotor used in the second chapter. This baseline rotor was 

intentionally chosen to be unstable. The equations of motion 

for this new four bladed simulation were also derived using 

Lagrange's method in a Maple® worksheet. Unlike the other 

rotor simulations, this new four bladed rotor had the 

additional capability of linking the blades, either 

elastically or rigidly. In addition to linear stiffness as a 

function of the angle made between the blade and its nominal 

position with respect to the hub, in this case, rotary 

stiffness terms were added as functions of the lead/lag 

angles made between adjacent blades. All linked stiffness 

and damping values were linear. 

If traditional linear root-end stiffness were described 

as Mn=k£*£n for the nth blade, then this new interlink 

stiffness could be described as: 

^n- ^interfn+l) ^SiH-l" 'an'  ^interln) **3n-l_ 'sn ' 

Where K^^ is the interlink stiffness (moment/angle) , and 

(Cn-i~Cj  and  (Cn-i-Cj  are  the  instantaneous  lag  angle 

differences between the nth blade and its two adjacent 

neighboring blades, (n+1) and (n-1). The simulation was also 
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given the capability of linking the blades with viscous 

dampers which were functions of blade lead angle rate 

differences: 

Investigations in the potential payoffs of inter-blade 

linking follow in the next three sections. The baseline case 

properties for the four bladed interlink rotor may be found 

in the following table: 

Table 3 

Q = 25.0 rad/s 
(239 RPM) 
e = 0.5 ft 

M^ = 160.0 si 
(5150 lbs) 

R = 10.5 ft 

M„lade = 4.0 si 
(129 lbs) 

00lag / Q = 0 . 6 

Linear Damping in Lag = 1.0% 

Linear damping in Hub Lateral Motion =2% 

Time histories for the baseline case blade lead angles 

may be found in Figure 34. This case also has been purposely 

set inside the region of instability, and clearly diverges. 
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Interlink Baseline Case, 239 RPM 
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Figure 34 • Four bladed interlink baseline 

C.   LINKED BLADE PARAMETRIC STUDIES: 

1.   Linked blade & hub response varying blade 
interlink stiffness for baseline rotor 

The effects of varying blade interlink stiffness for 

four different hub damping values can be seen in Figure 35. 

For the cases presented, each blade is elastically linked to 

each of the two neighboring blades in series. For very low 

interlink stiffness, K^/K^^ is low, the simulations are 

unstable,  similar  to  the baseline  case,  as  would be 

expected. As the interlink stiffness is increased, however, 
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a sharp increase in rotor stability occurs in the region 

where the blade interlink stiffness is of the same order of 

magnitude as the flexbeam chord-wise stiffness, K,,^. For 

these cases, previously unstable rotors were stabilized for 

all but the lowest hub damping of 1%. 
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2.   Linked blade & hub response varying blade 
interlink damping for baseline rotor 

Interlinking dampers was also attempted.  All  four 

blades were interconnected by similar dampers, thus putting 

the interlink dampers in series. Recall for the baseline 

four bladed rotor that linear blade damping was only 1.0%. 

For inter-blade damping,  the same four hub values are 

plotted in Figure 36. The interlinking of blade dampers also 

proves  effective.  Unlike  the  case of  the  interlinked 

stiffness, this increase in stability is to be expected 

since the overall system damping has been increased, even 

though the additional dampers are implemented in less than 

traditional means. 
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Figure 36 - Blade damper interlink results 

3.   Linked blade & hub  response with uneven interlink 
stiffness for baseline rotor 

Looking  at  unsymmetrical  blade  interlinking  was 

accomplished so as to change the relative phasing of the 

blades in ground resonance. Note that for the divergent 

baseline case (no linking), each blade moves 90 degrees out 

of phase with its neighbor in the case of a four-bladed 

rotor. In general for an n-bladed rotor, Coleman showed that 
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during divergence the blades moved at a phase angle of 2rc/n 

(radians) or 360/n (degrees) with respect to each other. It 

was expected that disrupting this phasing would change the 

magnitude of the rotor CG offset from the center of 

rotation, in turn reducing the coupling into the fuselage 

degrees of freedom. This is due to the fact that we can 

change the natural frequency of a system by altering its 

eigenvalue (changing the spring rate) or by altering its 

eigenvalue (changing the mode shape). In Figure 37, the #1 

and #2 blades alone are linked. This action does reduce the 

amplitude of the blade lead angles over the baseline 

unstable case, but all cases using this method diverged, 

nonetheless. 
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Blades One and Two Linked 

Time (sec) 

Figure 37 - Blades #1 and #2 linked 

Linking the blades in pairs, however, showed far 

different results. In Figure 38, the #1 and #4 blades are 

linked, and the #2 and #3 blades are linked. This 

interlinking in pairs stabilizes the rotor. For a linearly- 

unstable rotor, blade limit cycle amplitude is only 2 

degrees. 
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Blades Four/One and Two/Three Linked 
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Time (sec) 

Figure 38 - Blades #4&1 and #2&3 linked 

By linking the blades in adjacent pairs, the four 

bladed rotor acts more like a two bladed rotor, unable to 

enter ground resonance. This method of stabilizing the rotor 

shows promise in that the aerodynamic and handling response 

characteristics of a multi-blade rotor can be maintained, 

but the rotor exhibits the mechanical stability normally 

found in two bladed rotors. 
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4.   Interlink Dampers Versus Conventional Dampers 

In Figure 39, traditional blade dampers are compared to 

interlink dampers. Essentially, the four lead/lag dampers 

that might be found on a rotor have been detached from the 

hub and remounted between the four blade roots. Identical 

damping values were used for the two lines plotted. 
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Figure 39 - Conventional dampers versus interlink dampers 

The interlink damping proves more effective for a given 

damping value. Instead of the dampers acting independently 

for each blade, the new system takes advantage of the fact 
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that the blades are 90 degrees out of phase with each other, 

essentially amplifying the input to the dampers. Since 

weight is always a driving issue in aircraft design, if the 

dampers were mounted between the blades, instead of from the 

blade to the hub, smaller dampers could be installed and 

still maintain the desired damping in the blade chord-wise 

dynamics. 
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V.   ROTOR WITH UNEVEN BLADE SPACING 

As long as unsymmetrical rotors are being investigated, 

the effect of modifying blade spacing was also attempted. 

Blade motion time histories from a 60-120-60-120 degree 

spread rotor can be found in Figure 40. This rotor layout is 

similar to the AH-64 Apache tail rotor, where the four 

blades are not positioned 90 degrees apart, but instead 

arranged in an X pattern, not a perfect cross. The Apache- 

like rotor also exhibited blade divergence. The blade pairs 

diverged at different rates, but the same overall response 

was noted: mechanical instability was not avoided for any of 

the rotor speeds investigated for the case where uneven 

blade spacing was introduced. 
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Baseline Rotor With 60-120-60-120 Blade Spread 
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Figure 40 - Baseline rotor with 60-120-60-120 blade spread 
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VI.  GROUND AND AIR RESONANCE ANIMATION 

Obviously, numerous cases and configurations were 

simulated in the course of this research. All these 

simulations were performed on a PC running Simulink®. 

Utilizing the numerical analysis capabilities of Matlab® 

including the Hilbert damping analysis, numerous 

quantitative parameters were generated. 

In an attempt to provide a better qualitative picture 

for what the rotor was doing, an animation routine was 

written that would show the engineer visually what the 

blades and hub were doing in the horizontal plane. The 

animation routine written as part of this research plots the 

rotor blades as simple lines at the computed lead angle from 

the simulation at every time step. The depicted rotor does 

not rotate, so that blade action can be observed. The center 

of rotation is also changed. The animated blade center is 

plotted at the hub X and Y position with respect to the 

inertial frame, also obtained from the simulation at every 

time step. In this way, the outward spiral of the hub is 

also depicted as part of the animation. 

Though no numerical results are obtained, the animation 

routine was found very useful in providing an overview of 

rotor states. Four example frames of this simulation are 

shown in Figure 41. These frames show the progression of 
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blade movement in a typical ground resonance scenario. 

Notice how the animation illustrates the spiral motion of 

the CG of the rotor around the center of rotation. The 90 

degree blade phasing is also easily discernible. 
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Rotor Simulation Animation 

Simulation time: 

9.9167 sec 

co * t = 60° in Blade #1 Lead Cycle 
(blade *1 is at 6 o'clock in figure) 

9.9833 sec 

co * t = 120° in Blade 1 Lead Cycle 

10.1167 sec 

co * t = 240° in Blade *\ Lead Cycle 

10.1833 sec 

CD * t = 300° in Blade #1 Lead Cycle 

Figure 41 - Rotor animation 
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VII. DAMPERLESS ROTOR DEVELOPMENT CONCLUSIONS 

With the advent of hingeless and bearingless main rotor 

helicopters, interest in nonlinear rotor dynamics has 

increased significantly in recent years as an area to 

research for improved rotor stability. With the rapid 

evolution of high-speed processors and recent developments 

in software technology, we now have the tools available to 

explore rotor system nonlinear dynamics and potentially 

achieve helicopter rotor mechanical stability. 

This dissertation furthered the development of a non- 

linear analysis tool that has the capability of modeling a 

rotor's nonlinear material properties. Most importantly, the 

simulation did not incorporate assumptions or ordering 

schemes that limit the number of terms in the equations of 

motion and subsequently skew the output. In the simulation 

used, not a single term was eliminated. 

Potential methods for passively controlling lead/lag 

motion of helicopter blades have been developed. One of the 

methods presented utilizes Duffing-type nonlinear stiffness 

in the root end of the rotor blade in addition to linear 

spring and damping properties. The Duffing spring provides a 

restoring force that is a cubic function of the blade 

lead/lag deflection. This nonlinearity shifts the first in- 

plane natural frequency of the blade as a function of the 

blade lag angle. This shift in blade natural frequency 
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effectively varies the regressing mode frequency. The 

resulting shift in the regressing mode prevents coalescence 

with hub resonant frequencies. For a linearly unstable 

rotor-fuselage system, inclusion of the Duffing spring 

results in limit cycle behavior in the blade lead/lag 

degrees of freedom and in hub translational motion. 

An analysis of the limit cycle motion effect on hub 

vibrations was also completed. The replacement of blade 

auxiliary lag dampers with nonlinear springs results in 

increased hub vibration levels if the resulting system is 

highly unstable in the linear analysis. Rotors that are 

marginally stable, or stable, in the linear analysis produce 

vibration levels that are not uncommon in production 

rotorcraft. 

The primary conclusions of this research on damperless 

rotors are: 

• Application of nonlinear stiffness properties to the 

blade lead/lag degrees of freedom can effectively improve 

helicopter ground/air resonance stability 

characteristics. 

• Stability characteristics are improved through frequency 

mismatch, not by dominating system dynamics with high 

damping. 

• Blades with low lead/lag natural frequencies have greater 

potential for producing unacceptable vibration levels in 
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both dynamic  and non-rotating  components  if  Duffing 

stiffness is employed. 

• Interblade rigid and elastic coupling has the potential 

to eliminate helicopter unbounded blade motion. 

• In this case, the interblade coupling achieves stability 

by altering the phase of relative blade response. That 

is, the response eigenvector has been altered. 

• Interblade viscous damping, selectively applied, can be a 

more efficient use of blade auxiliary dampers than the 

conventional blade-to-hub arrangement. 

• Uneven blade spacing, for the case examined (60-120-60- 

120), did not prove effective in avoiding helicopter 

ground and air resonance. 
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APPENDIX A. COMANCHE FROUDE SCALE MODEL SIMULATION 

Comanche Rotor Design Overview 

Engineering data on the Boeing/Sikorsky RAH-66 Comanche 

Froude scale wind tunnel model was obtained from Sikorsky- 

Aircraft as part of a research program initiated through the 

National Rotorcraft Technology Center (NRTC) [Refs. Al, A2] . 

Additional material on the Comanche rotor is provided by 

Tarzanin and Panda [Ref. A3]. 

The Boeing/Sikorsky report obtained by NPS outlines 

testing procedures, results, and basic rotor design geometry 

of the Comanche model rotor. The Comanche rotor design 

utilizes a bearingless main rotor (BMR) flexbeam arrangement 

for blade lead/lag, flap, and feathering degrees of freedom. 

A cuff, which is stiff in torsion and bending, encases the 

flexbeam and provides input torques in the feathering axis 

to the blade at the outboard end of the flexbeam, at the 

cuff/blade joint. A damping device called the snubber-damper 

is mounted between the inboard end of the cuff and the hub 

to provide additional damping and stiffness in the blade 

lead/lag degrees of freedom. A depiction of this rotor is 

given in Figure Al, reproduced from Panda. 
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Figure Al - Froude scale Comanche rotor design [From Ref. A3] 

Description of Nonlinear Snubber-Damper 

The snubber-damper is made up of alternating layers of 

metal and elastomer, which provides damping when the layers 

are put in shear. Unfortunately, the damping and stiffness 

values for the snubber-damper are not constant; they are a 

strong function of the snubber-damper displacement 

amplitude. The initial snubber-damper designs provided very 

little damping for small deflections. 
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In addition to the low damping values, snubber-damper 

stiffness tended to rise sharply for very small amplitudes. 

Plots of the snubber-damper stiffness and loss factor were 

published by Panda and follow as Figure A2, [Ref. A3] . The 

"Elastomeric Damper" depicted is the device used in the 

1992-1993 wind tunnel tests and the "Fluidlastic®" damper 

was the result of a redesign, tested in 1995. 
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Figure A2 - Snubber-damper stiffness and loss factor [From Ref. A3] 

Inherent in the design of these devices, the snubber- 

dampers exhibit hysteresis in their blade restoring force as 

a function of displacement. Panda reported the Comanche 
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elastomeric snubber-damper as having sufficiently low 

damping at small displacements that this device caused limit 

cycle oscillations in the blade chord-wise motion. This 

limit cycle motion produced undesired vibrations in the 

coupled rotor-fuselage system. The Fluidlastic® snubber- 

damper alleviated the severity of the limit cycle motion 

problem. One can see less reduction in the Fluidlastic® 

damper loss factor at small displacement amplitudes in the 

lower plot of the previous Figure. 

Flexbeam and Cuff Modeling 

In order to accurately model the 1/6 scale Comanche 

wind tunnel test rotor, flexibility in the blade and 

flexbeam had to be accurately modeled. Initially, a linear 

beam approximation was used. This was done primarily as a 

first iteration in the model design process. The linear 

theory also provided data for verification of a Myklestad 

method that was coded in Matlab® as an additional task in 

this research. 

87 



Comanche Model Assembly 

The Comanche 1/6 scale flexbeam and blade were modeled 

using the Myklestad program. Example output of a 1-inch 

blade tip deflection in lag follows as Figure A3. 
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Figure A3 - Combined flexbeam/blade analysis 

Using the Myklestad program, the equivalent offset was 

found to be a constant value of 8.52 inches from the center 

of rotation, with the snubber-damper not installed. This 

equivalent offset is highlighted in Figure A4 by a small 

circle. 
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Equivalent Offset by Myklestad Method 
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Figure A4 - Flexbeam/blade deflection 

From Figure A4, it can be easily seen that the outboard 

aerodynamic portion of the blade moves as a rigid body for 

in-plane bending at the frequencies of interest. Therefore, 

the portion of the blade outboard of the equivalent offset 

was modeled as a single degree of freedom. Since the slope 

change in the combined model is at the root end in the soft 

region of the flexbeam, an articulated type attachment could 

be used for mathematical modeling of the hingeless rotor in 

the Simulink® simulation. 
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Using the blade mass distribution data provided, a 

blade mass and moment arm were computed. A blade moment of 

inertia was calculated from this data about the equivalent 

offset. This inertia was then broken down into an equivalent 

mass, n^, and moment arm, 1. The blade was modeled as a 

point mass at a distance 1 from the offset, such that the 

total mass of the' actual blade matched the point mass value 

in the model. For accurate modeling of the lead/lag 

dynamics, it was desired that e*S/I for the actual blade 

match e/1 for the point mass model, where S is the first 

mass moment of the blade and I equals the second mass moment 

of the blade. The blade model was determined to be a 0.0129 

slug point mass at a radial location of 30.06 inches. 

Model parameters for the portion of the blade outboard 

of the effective offset are compared to the actual blade in 

the following table: 

Table Al 

Froude Model NPS Model 
Blade/cuff moment of inertia, I 4.5212 sl*inA2 
Blade/cuff mass moment, S 0.2099 sl*in 
Blade/cuff mass, m. 0.0129 si 
I/S 21.5407 in 
Blade lag offset 8.5435  in 
Point mass radial location 30.0642 in 

The cuff is far stiffer than the flexbeam, providing an 

essentially rigid sleeve around the flexbeam. For lead/lag 

motion, the flexbeam simply bends inside the interior 

dimensions of the cuff. Since the snubber-damper attaches at 
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the inboard end of the cuff, the snubber-damper 

displacements were considered to be a function of an 

extension of the cuff/blade joint angular displacement and 

off-axis deflection, as seen below in Figure A5: 

Joint angular displacement 

Cuff-blade joint 

Hub 

Joint off-axis deflection 

Snubber deflection 

Figure A5 - Snubber-damper motion as a function of cuff/blade joint motion 

Assuming a constant equivalent offset for blade 

lead/lag motion, a geometric gain was computed for snubber- 

damper displacement as a function of blade lead/lag angle. 

Using the physical properties of the blade root end, the 

geometric gain was computed to be 5.937 inches of snubber- 

damper deflection in shear for every radian of blade lead, 

assuming small lead/lag angles. 

Snubber-Damper Model 
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The NPS nonlinear rotor simulation was modified to 

incorporate nonlinear snubber-damper coefficients in both 

stiffness and damping. The loss factors made available in 

the Boeing/Sikorsky report were first converted to 

dimensional damping coefficients. The loss factor is defined 

as the out-of-phase force divided by the in-phase force. 

Since the experimental loss factor data in the report was 

recorded at a fixed driving frequency of 10 Hz, the loss 

factor data could be converted to dimensional damping 

values. The dimensional damping value may be expressed as: 

0) 

where r\ is the loss factor, k is the nonlinear snubber- 

damper stiffness, CO is the forcing function frequency, and 

x is the snubber-damper displacement. 

Traditional hydraulic and viscous damping methods were 

attempted in the nonlinear snubber-damper mathematical 

model, in addition to higher order curve fits. A fourth 

order fit, c (x) =cpc<+c3x
3+c2x

2+c1x+c0, in displacement was 

decided upon as the best trade-off between accuracy and 

model order reduction. A linear relationship was used for 

snubber-damper displacements greater than 0.6 inches. 

The polynomials formulated for both the snubber-damper 

damping and stiffness formulations follow: 
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Table A2 

1992  Elastomeric  snubber-damper: 

c=-842875x*+87576. 8xJ-2847 . 07x'+25 . 01x+0 .47 

k=336241084x4-38666827xJ+1547897x'-26483 .84x+233 .32 

1995  Fluidlastic® snubber-damper: 

c=116695 . 68x*-14022 . 78xJ+609 . 0x'-12 . 05x+0 .59 

k=38512436.84x4-4491019.58xJ+183336. 70x^-3147. 25x+79 .71 

where c is in lbs/in/s, k in lbs/in, and x in inches. The 

stiffness and damping results are compared to the snubber- 

damper laboratory data provided in the plots that follow: 
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1994  Fluidlastic® Snubber 1992  Elastomeric  Snubber 
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Figure A6 - Snubber-damper stiffness and damping properties 
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NPS Simulation Results for the 1/6 Scale Coxnanche 

Example results of the NPS rotor simulation follow. The 

inputs for these plots may be found in the following table: 

Table A3 - Helicopter physical and aerodynamic parameters 
Helo Physical and Aerodynamic Parameters 

% Rotor speed, rad/sec Omega=870*(pi/3 0) 
% Equivalent lag offset, inches el=8.5235 
% Equivalent blade length, inches 1=21.5407 
% Snubber radial location, inches Rs=2.5984 
% Lead/lag stop position, rads No lag stops modeled 
% Mass of rotor blades, slugs mb=0.0129 
% Effective mass of fuselage, slugs Mx= 0.6452 

My= 1.3802 
% Blade azimuth phase angles, rads Phi(l:5)=[0 2 4 6 8]*pi/5 
% geometric gain of snubber 
movement from lag, in/rad 

gg=5.1121 

% Spring stiffness polynomial for 
lead-lag, in*lbs/radian) (1995 
snubber) 

Kbeam=[0,0,0,0,660.9141] 
Ksnub=[38512436.84*ggA4, 
-4491019.58*ggA3,183336.70*ggA2, 
-3147.25*gg,79.71] 
*(el-Rs)A2 
Kpo ly=Kbeam+Ksnub 

%     Lead-lag stop spring 
constants, in*lbs/radian 

Ks=0 
No lag stops modeled 

% Damping polynomial in lead-lag 
(in*lb/(rad/sec)) (1995 snubber) 

Cpoly=[116695.68*ggA4, 
-14022.78*ggA3,609.0*ggA2, 
-12.05*gg,0.59] *(el-Rs)A2 

Linear springs in translation, 
lbs/in 

K(l)=297.38 
K(2)=217.93 

Linear damping in translation, 
(lbs/(in/sec)) 

c(l)=1.29 
c(2)=1.88 

Non-linear damping in translation, 
lbs/(in/sec)A2) 

v=0 

Fuselage initial displacements, in 
(all other IC's = 0.0) 

xXi=0.1 
xYi=0.1 

The fourth order snubber-damper model is employed in 

the simulation depicted in the following time histories. All 

blades are given initial conditions of zero lead angle 

displacement and zero velocity. All rotor and hub dynamics 

are initiated by a 0.1 foot displacement in both the x and y 
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dimensions of hub motion. Hub response from these initial 

conditions is shown in Figure A7. This initial condition is 

equivalent to a lateral restraining force on the hub of 

36.87 lbs. being released at time t=0.0 in the simulations. 

This comparatively large impulse was set to insure coupling 

of the rotor/body dynamics. 

Hub Translational Time Histories 

3 4 5 6 

Time (s) 

Figure A7 - Hub translational time histories 

The Comanche wind tunnel tests utilized a shaker in the 

fuselage to initiate rotor/body coupling prior to recording 

time histories for analysis. Since the initial conditions 
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varied for each test in the tunnel, duplication of the exact 

initial conditions was impossible with the simulation, and 

the fixed initial conditions on the hub displacement were 

used. The Boeing/Sikorsky report describes this process as 

follows: 

"The blade lead-lag mode was excited by the 

swashplate cyclic shaker operating at the fixed 

system lead-lag regressing frequency. When 

required, a fine adjustment was made to maximize 

the lead-lag response of the model. The amplitude 

was monitored (on line) by a spectrum analyzer. 

When the forced response was judged to be maximum, 

the shaking was stopped, marking the beginning of 

the transient decay. The following 10 seconds of 

chord bending and fuselage roll-pitch data was 

collected and analyzed by a moving-block method to 

determine the frequency and damping ratio of the 

mode being investigated." [Ref. A2] 

Response to the relativey stiff rotor blades is shown 

in Figure A8. The Comanche lead/lag frequency was reported 

to be 0.7lO0 for the 1995 system,  0.692Q,0    for the 1992 

system. 
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Blade Lead/Lag Motion Time Histories 

Blade 1 
Blade 2 
Blade 3 
Blade 4 
Blade 5 

3 4 5 6 

Time (s) 

Figure A8 • Blade lead angle time histories 

Damping for each of the five blades was determined 

using a Hubert transform method [Ref. ß.5] . The damping 

value for the blades was then averaged for the final 8 

seconds of the 9 second time history. This average was then 

converted to a fixed system damping value replicating the 

method used in the Comanche test: 

"The rotating system damping ratio is converted to 

a fixed-system damping ratio by multiplying by the 

ratio of the rotating-system lead-lag mode frequency 

98 



(03^)  to the fixed-system lead-lag regressing mode 

frequency (Q-co^) ." [Ref. A2] 

An example output of the Hilbert damping analysis for 

the #5 blade follows: 
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-0.2 

_  0 

£-10 
I 
£-20 

Hubert Method Damping Determination 

In« 
i 1   1  1 ■ 

■ 

1     '< I            3 4 5 6             7             8             9 
i i 1                     1 

 1 i i  —■           Damping Hatio = 0.010316 

2 3 4 5 6 7 

Time (sec) 

0.1 

*. 05 

n F ~i r 

Dominant Freq = 69.6274 

100  200  300  400   500  600  700   800  900 

Freq, rad/s 

Figure A9 - Blade motion damping analysis 

The top subplot is the time history of blade lead angle 

that was analyzed. The second subplot is the natural 

logarthm of the absloute value of the Hilbert transform of 
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the signal. A first order fit to this plot is also shown. 

The damping of the signal was then computed by dividing the 

negative of the slope by the time history frequency. The 

primary frequency of the time history is determined by power 

spectral density using Matlab®'s discrete fourier transform 

function, "fft.m." The results of the power spectral density 

are shown in the third subplot. This Hilbert transform 

method works well for signals dominated by a single mode. 

Smith obtained more accurate results with the Hilbert 

transform method than with Moving Block for signals with a 

single mode present [Ref. A5]. Results of the Hilbert 

transform damping analysis of the two hub degrees of freedom 

follow in Figures A10 and All. 
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Figure A10 - Hub X direction damping 
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Figure All - Hub Y direction damping 

The frequencies obtained from the NPS simulation are 

summarized in the following table: 

Table A4 

NPS Simulation Boeing/Sikorsky report 

Hub X 3.23 Hz 3.20 Hz 

Hub Y 1.99 Hz 2.00 Hz 

Lead/Lag 0.76Q 0.692Q0 
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Comparison with Test Data 

The goal of the application of the NPS simulation to 

the Comanche scale rotor data was the matching of fixed 

system damping values to the test data and to UMARC. The 

plot that follows reproduces the Boeing/Sikorsky report's 

Figure 50b, from the 1992 test results [Ref. Al] . The 1992 

test data was chosen as a more rigorous test of the NPS 

simulation, since the snubber-damper used in the 1992 tests 

exhibited greater nonlinear behavior. The first plot, Figure 

A12, shows the NPS simulation's initial results: 
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Figure A12 - Initial NPS simulation results 
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The geometric gain, the snubber-damper shear to blade 

lead angle ratio, was considered a soft parameter and varied 

in an atttempt to obtain more accurate matching with the 

existing data. 

As the geometric gain was increased, slightly better 

results were obtained. The following plot shows the results 

of increasing the geometric gain by a factor of 1.5. From 

these results, the wind tunnel model, it is assumed, was 

seeing more snubber-damper movement than the modeling method 

assumptions had called for. This soft parameter, the 

geometric gain, is related to the multiple load path problem 

alluded to earlier. In brief, the basic assumptions 

underestimated the amount of snubber-damper motion with lead 

angle changes. Recall only lead/lag motion is modeled, and 

the bearingless Comanch rotor model experienced coupling in 

the lead/lag dynamics from other model degrees of freedom. 

With the advantage of having the test data results a 

priori, the model was tuned to best replicate the wind 

tunnel data using the geometric gain as a tunable parameter. 

With the higher geometric gain mentioned, the NPS simulation 

appeared to replicate the model data slightly better than 

UMARC at the lower RPM's tested. At higher rotor speeds, the 

difference between the two simulations is negligible. 
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Figure A13 - Final NPS simulation results with increased geometric gain 

Comanche Modeling Conclusions 

• If the physical rotor exhibits migration of the 

effective offset with varying lead angles and 

velocities, forcing a hingeless rotor into an 

articulated model contaminates the results. 

• The inclusion of aerodynamics, coupling in the rotor 

lead/lag, flap, and torsion should be included in 

the modeling of a bearingless rotor. 

105 



• Modeling the blade portion that is outboard of the 

effective offset with only two parameters, blade 

length and tip mass, is incapable of matching all 

the inertial properties required to accurately- 

simulate both lead/lag and hub motion. 

• Additional degrees of freedom are required in the 

lead/lag dynamics to better approximate multiple 

load paths from the blade to the hub. 

• For a fledgling code, the NPS simulation shows 

potential in modeling rotors with nonlinear physical 

parameters and further development should be 

considered. 
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APPENDIX B. MYKLESTAD BEAM MODELING METHOD 

In 1944, Myklestad published a method for finite 

element analysis of beams in bending for vibrations 

applications in his book, "Vibration Analysis" [Ref Bl]. His 

method breaks a beam into segments that have essentially 

linear behavior over the segment length. Equations of motion 

of each of the separate elements are then tied together as 

separate degrees of freedom. In Myklestad's method, each 

beam element is defined as a point mass and a massless 

elastic element in bending, as depicted in Figure Bl, 

modified from Gerstenberger and Wood [Ref. B2]. 

Figure Bl - Typical Myklestad beam element [After Ref. B2] 

109 



By defining element members in this way, a beam with 

inertial and mass properties that change as a function of 

beam longitudinal position may be well approximated. Shear, 

moment, angular displacement and beam deflection may be 

described for each element as follows: 

Sn+i=Sn+mnynü)2 

I I     2 

n   n n   n 

l    2 I    3 

2EJn 3EJ„ 

where CO is the first beam natural frequency in bending, lan+1 

is the segment length, En is the element stiffness, and Ia is 

the element second area moment. 

Myklestad's method may be modified from the simple beam 

in bending to rotating beams by the inclusion of centrifugal 

and blade tension terms. For this case, • the x-y plane is 

transformed to a radial and off-axis displacement frame, as 

depicted in Figure B2, also reproduced from Gerstenberger 

and Wood. 
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In, n+1 

Figure B2 - Typical rotating Myklestad beam element [From Ref. B2] 

The equations for a Myklestad beam element in the 

rotating frame  follow: 

Sn=Sn+l+mn(Q)2+£l2)xn 

Tn=Tn+l+mnCl2rn 

"" n = M n+i + O „+]/„_„+! — Tn+l \Xn+1 —Xn) 

©„ = ®n+iQ-Tn+1Un,n+l) + Mn+1VRtn+l -Sn+lUn^ 

Xn = Xn+l + ®A,n+l + ^n+l®n+l^n,n+l ~ ^n+1^n,n+l ~^n+l^n,n+l 

where  Vn>n+1 = /n,n+1/En/n, C7„iB+I =ln,J/2EJn, andGn^ =ln,J/3EJn. 

A program written in the Matlab® application language 

that analyzes a beam using Myklestad's method may be found 

elsewhere in the Appendicies. This program analyzes beam or 
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rotor blade inertial, geometric, and stiffness data for any 

number of beam segments, up to the limitations of the 

Matlab host program used. Both rotating and non-rotating 

beams can be analyzed. 

The program also has the capability of applying 

different boundary conditions at the ends of the beam. An 

articulated blade requires zero moment and displacement at 

the lag hinge where a hingeless rotor requires zero angular 

displacement and deflection at the root end. In both cases, 

shear and moment must be zero at the blade tip. 

Linear beam theory was utilized as a means of verifying 

output of the Myklestad bending program. In the case of the 

flexbeam, where clamped end restoring moments were needed, 

the rotary spring constant of — = — was used to check the 

Myklestad output. This rotary spring constant for the blade, 

namely the flexbeam root-end moment per unit tip angular 

deflection, was a required input for the NPS rotor 

simulation. 

Frequencies of oscillation were checked against Den 

Hartog's text "Mechanical Vibrations" [Ref. Bl] . For 

example, the first lag frequency of the hingeless blade 

determined by the Myklestad program was checked with the 

cantilevered beam frequency from Den Hartog, fi) = 3.52 
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The plots in Figure B3 shows typical output of the 

Myklestad program. The third subplot, the moment as a 

function of beam longitudinal position, shows a comparison 

to linear theory. The example beam used in this comparison 

has a length of 10 inches, a weight distribution of 0.1 

lb/in, and a constant El of 10000 lb*in2. It can be seen 

that the Myklestad program correctly applies the four 

boundary conditions of zero slope and deflection at the 

root, and zero shear and moment at the tip. It should be 

noted that a small correction is made to the shear at the 

tip of the beam. This is done due to the final Myklestad 

element having a net shear at the tip one beam element away 

from the final mass element. This tip correction to shear is 

common practice in applications of Myklestad's method. 
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Figure B3 - Myklestad analysis output 

The following table compares a non-rotating 

cantilevered beam to Den Hartog's closed form equations, 

verifying the frequencies obtained from the Myklestad 

program: 

Table Bl 

Linear theory Myklestad 

Non-rotating cantilevered beam 69.6484 Hz 69.2986 Hz 

The Myklestad computer code follows in the appendices. 
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APPENDIX C   -  MYKLESTAD METHOD PROGRAM  IN MATLAB 

function myklestad 

clear 
format compact 

% Required inputs: 
Ohm=0; % Rotor rad/sec 
tolb=0.1; % tolerance in acceptable assumed frequency 
(rad/sec) 

load h66blade.mat -ascii 
el=2.5984; 

% snubber radial location, in 
radius=38.976; 

% blade radius, in 
rb=fliplr(h66blade(:,1)'*radius); % in 
wb=fliplr(h66blade(:,2)'); % lb inA2 
EIb=fliplr(h66blade(:,3)') ; % lb/in 
rf=rb(l:17); 
wf=wb(l:17); 
EIf=EIb(l:17); 
figure(4),plot(rf,Elf/1000),grid 
xlabel('Radius (in)','FontSize',16) 
ylabeK'EI, in*2Klb' , 'FontSize', 16) 
title('EI vs Radial Location for Flexbeam','FontSize',16) 
muf=(wf/32.2) ,- 
nfe=length(rf); 

doutbd=[diff(rf),0]; 
dinbd=[0,diff(rf)]; 
mEIf=sum((dinbd+doutbd)/2.*EIf)/(rf(nfe)-rf(1)) ; 
disp([' The flexbeam length is: ',num2str(rf(nfe)-rf(1)),' in']) 
disp([' The mean El for the flexbeam is: ',num2str(mEIf),' lb*inA2']) 

% obtain beam natural frequency and root-end transfer matrix 
% Finds natural frequency and dynamics matrix using 
% Myklestad method for beam bending 

k=0; 

if nfe~=length(EIf) 
error('The El vector is not the same size as the r vector.') 

elseif nfe~=length(muf) 
error('The mass/length vector is not the same size as the r 

vector.') 
end 

omega_l=3.52*sqrt(mean(EIf)/(mean(muf)*(rf(length(rf))-rf(1))*4)); 
% rad/sec 

omega=[0.9 1.1]* omega_l; 
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% * ****************WHILE LOOP ********************* 
while (abs(omega(1)-omega(2))>tolb) 

k=k+l; 

% Th_tip = 1, all others zero 
tip=[l; 0; 0; 0] ; 

state=mykloop(tip,omega(1) ,rf ,muf ,EIf ,Ohm) ,- 

% compute b components of dynamics matrix 
bTh=state(l,l); bX=state(2,1); bM=state(3,1); bS=state(4,1); 

%b=[bTh, bX, bM] 
% debug 

%plotstate(2,r,state,omega(1)),pause 
% debug 

% X_tip = 1, all others zero 
tip=[0; 1; 0; 0]; 
state=mykloop(tip,omega(1),rf,muf,EIf,Ohm); 

% compute a components of dynamics matrix 
aTh=state(l,l); aX=state(2,1); aM=state(3,1); aS=state(4,1); 

%a=[aTh, aX, aM] 
% debug 

%plotstate(3,r,state,omega(1)),pause 
% debug 

% compute determinant 
dynam=[bTh,aTh;bX,aX]; % cantilevered blade 

if k==l 
omega=fliplr(omega); 
err=det(dynam); 

else 
err=[det(dynam),err]; 
% use linear interpolation for next guess at omega 

omega=[max(0,omega(1)-err(1)*((omega(2)-omega(1))/(err(2) 
err(l)))), omega]; 

%[spline(err,omega,0), omega]; % optional spline 
method 

end 

end  % while loop 
%**************** *WHILE LOOP* * ******************* 

% debugging 
disp([' ',num2str(k) , ' iterations in obtaining root transfer matrix'] 
figure(3),plot(omega(2:k+l),err,omega(2:k+l),err,'o') 
xlabel('omega'),ylabel('determinant') , grid,title('Convergence Plot') 

Mj=-bM; 
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Kj=aM/rf(nfe); 
dispC ') 
dispC For Simulation Inputs, the Flexbeam Produces') 
disp(['  the following values for Omega = ',num2str(Ohm*30/pi),' 
RPM']) 
disp(f Mj = ',num2str(Mj),' in*lb/rad deflection at the joint']) 
disp([' aS = ',num2str{aS),' So/Xt for root transfer matrix']) 
disp([' Kj = ',num2str(Kj),' lb/in deflection at the joint']) 

plotstat(2,rf,state,omega(1)) 
tip=[l; 0; 0; 0]; 
state=mykloop(tip,omega(1),rf,muf,EIf,Ohm); 
bTh=state(l,l); bX=state(2,1); bM=state(3,1) ; 
plotstat(3,rf,state,omega(1)) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

load h66cuff.mat -ascii 

nel=length(h66blade(:,1)); 
rc=fliplr(h66cuff(:,1)'*radius); % in 
wc=fliplr(h66cuff(:,2)'); % lb in~2 
ra=rb(17:length(rb)); 
wa=wb(17:length(wb)); 

rca=[rc,ra]; 
% in 

wca=[wc,wa] ; 
% lb in~2 

S=0;I=0;M=0; 
for n=2:length(rca) 

dr=rca(n)-rca(n-l); 
wdr=mean(wca(n-1:n)); 
rcent=mean(rca(n-l:n)); 
S=S+rcent*dr*wdr; 
I=I+rcent*2*dr*wdr; 
M=M+dr*wdr; 

end 

Mb=- (el"v2*MÄ2-2*el*M*S+S*2) / (-elA2*M+2*el*S-I) ; 
Ms=(SA2-I*M)/(-elA2*M+2*el*S-I); 
R=-(el*S-I)/(-el*M+S); 

disp([' Mb = ',num2str(Mb),' slugs for blade mass at position R']) 
disp([' Ms = ',num2str(Ms),' slugs for mass at snubber position']) 
disp([' R = ',num2str(R),' inches radial location for mass Mb']) 
disp(' ') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function state=mykloop(tip,omega,r,mu,El,Ohm) 
% next step subfunction in Myklestad method 
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nbe=length(r); 
l=[diff(r)];l=[l 1(length(1))]; % delta-r in 
V=1./EI; 

% l/(in*lb) 
U=(1.A2)./(2*EI); ? 
1/lb 
G=(1.A3)./(3*EI); * 
in/lb 
T=fliplr(cumsum(fliplr(mu.*r)))*0hmA2; % lb 

% tip correction to shear: 
tip(4)=tip(4)+(mu(nbe-l)*l(nbe-l)*(omega"2+OhmA2)*tip(2))*.47; 

state=[zeros(4,nbe-l),tip]; % initialize state 

for n=(nbe-l):-l:l 

Th=state(l,n+1) ; % theta 
X=state(2,n+1); % deflection 
M=state(3,n+1); % moment 
S=state(4,n+1); % shear 

Thn = Th*(l+T(n)*U(n))-M*V(n)-S*U(n); 
Xn = X-Thn*l{n)+T(n)*Th*G(n)-M*U(n)-S*G(n); 

Mn = M+S*l(n)-T(n)*(X-Xn); 
Sn = S+mu(n)*l(n)*(omegaA2+OhmA2)*Xn; 

%[Thn;Xn;Mn;Sn] % 
debug 

state(:,n)=[Thn;Xn;Mn;Sn]; 
end 
%state 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [omegan,dynam,state]=natural(r,mu,EI,Ohm,articu,toler) 

% Finds natural frequency and dynamics matrix using 

% Myklestad method for beam bending 

% Robert L. King 
% April 1998 

k=0; 
nbe=length(r); 

if nbe~=length(EI) 
error('The El vector is not the same size as the r vector.') 

elseif nbe~=length(mu) 
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error('The mass/length vector is not the same size as the r 
vector.') 
end 

if articu==l     % first guess at 1st bending freq - use eqn for 
uniform beam: 

omega_l=15.4*sqrt(mean(El)/(mean(mu)*(r(length(r))-r(1))M)); 
% rad/sec 

else 
omega_l=3.52*sqrt(mean(El)/(mean(mu)*(r(length(r))-r(1))~4)) ; 
% rad/sec 

end 
omega=[0.9 1.1]*omega_l; 

%***** ************WHIIJE LOOP ********************* 
while (abs(omega(1)-omega(2))>toler) 

k=k+l; 

% Th_tip = 1, all others zero 
tip=[l; 0; 0; 0]; 

state=mykll (tip,omega(l) »r.im^E^Ohm) ; 

% compute b components of dynamics matrix 
bTh=state(1,1); bX=state(2,1); bM=state(3,1) ; 

%b=[bTh, bX, bM] 
% debug 

%plotstate(2,r,state,omega(1))»pause 
% debug 

% X_tip = 1, all others zero 
tip=[0; 1; 0; 0] ; 
state=mykll(tip,omega(1),r,mu,El,Ohm); 

% compute a components of dynamics matrix 
aTh= state(1,1) ; aX=state(2,1) ,- aM=state(3,1) ,- 

%a=[aTh, aX, aM] 
% debug 

%plotstate(3,r,state,omega(1)),pause 
% debug 

% compute determinant 
if articu==l 
dynam=[bM,aM;bX,aX]; % articulated blade 

else 
dynam=[bTh,aTh;bX,aX];        % cantilevered blade 

end % if statement 

if k==l 
omega=fliplr(omega); 
err=det(dynam); 

else 
err=[det(dynam),err]; 
% use linear interpolation for next guess at omega 
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omega=[maxfO,omega(1)-err(1)*((omega(2)-omega(1))/(err(2) 
err(l)))), omega]; 

%[spline(err,omega,0), omega]; % optional spline 
method 

end 

end  % while loop 
% * ****************WHILE LOOP* * ******************* 

disp([' ',num2str(k),' iterations in natural.m.']) 
% debug 

omegan=omega(1) ; 

% debugging 
figured) ,plot (omega(2 :k+l) ,err,omega(2 :k+l) ,err, 'o') 
xlabelComega'),ylabel('determinant'),grid,title('Convergence Plot') 
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APPENDIX  D  -  MAPLE WORKSHEET  FOR COLEMAN MODEL 

EQUATIONS  OF MOTION FOR GROUND RESONANCE  CONSIDERING  ONLY  INPLANE 
DEGREES  OF  FREEDOM 

DEFINE COORDINATE  TRANSFORMATIONS 

Blade undeformed axis  — Hub   : 
> restart: 
> with(linalg): 
Warning, new definition for norm 
Warning, new definition for trace 
> psi:=Omega*t+Phi[k]; 

psi := Omega t + Phi[k] 

> Tl:=alpha->matrix(3,3,[1,0,0,0,cos(alpha),sin(alpha), 0,- 
sin(alpha) ,cos (alpha) ] ) ; 

Tl := alpha -> matrix(3, 3, 

[1, 0, 0, 0, cos(alpha), sin(alpha), 0, -sin(alpha), cos(alpha)]) 

> T2:=alpha->matrix(3,3,[cos(alpha),0, - 
sin(alpha),0,1,0,sin (alpha),0,cos(alpha)]); 

T2 := alpha -> matrix(3, 3, 

[cos(alpha), 0, -sin(alpha), 0, 1, 0, sin(alpha), 0, cos(alpha)]) 

> T3:=alpha->matrix(3,3,[cos(alpha),sin(alpha),0,- 
sin(alpha),cos(alpha),0,0,0,1]); 

T3 := alpha -> matrix(3, 3, 

[cos(alpha), sin(alpha), 0, -sin(alpha), cos(alpha), 0, 0, 0, 1]) 

> diffl:=arg->map(diff,arg,t) ; 

diffl := arg -> map(diff, arg, t) 

> Ml:=transpose(T3(psi)); 

[cos(%l) -sin(%l) 0] 
[ ] 

Ml   :=   [sin(%l) cos(%l) 0] 
[ ] 
[0 0 1] 

%1   := Omega t  + Phi[k] 
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> M2:=transpose(T3(zeta[k](t))); 

[cos(zeta[k](t)) -sin(zeta[k](t))    0] 
[ ] 

M2 := [sin(zeta[k](t)) cos(zetafk](t))    0] 
[ ] 
[0 0           1] 

Energy of rotor blades 

Kinetic energy of kth rotor blade (TBk) 

> rhoHI_I:=vector([u[l](t),u[2](t),0]); 

rhoHI_I := fu[l](t), u[2](t), 0] 

> rhoBuH:=vector([el,0, 0]) ; 

rhoBuH := [el, 0, 0] 

> rhoBuH_I:=multiply(Ml,rhoBuH); 

rhoBuH_I := [cos(Omega t + Phi[k]) el, sin(Omega t + Phi[k]) el, 0] 

> rhoPBd:=vector([R, 0, 0]); 

rhoPBd := [R, 0, 0] 

> rhoPBd_I:=multiply(Ml,M2,rhoPBd); 

rhoPBd_I := [(cos(%l) cos(zetafk](t)) - sin(%l) sin(zeta[k](t))) R, 

(sin(%l) cos(zeta[k](t)) +cos(%l) sin(zeta[k](t))) R, 0] 

%1 := Omega t + Phi[k] 

> rho:=map(simplify,matadd(rhoHI_I,matadd(rhoBuH_I,rhoPBd_I))); 

rho := [u[l](t) + cos(%l) el + R cos(%l) cos(zetafk](t)) 

- R sin(%l) sin(zeta[k](t)), u[2](t) + sin(%l) el 

+ R sin(%l) cos(zeta[k](t)) +Rcos(%l) sin(zeta[k](t)), 0] 

%1 := Omega t + Phi[k] 

> V:=diffl(rho); 

[/d        \ 
V := [|-- u[l](t)| - sin(%2) Omega el 

[\dt       / 
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- R sin(%2) Omega cos(zeta[k](t)) - R cos(%2) sin(zeta[k](t)) %1 

- R cos(%2) Omega sin(zeta[k](t)) - R sin(%2) cos(zeta[k](t)) %1 

/d        \ 
, |— u[2](t)| + cos(%2) Omega el 

\dt       / 

+ R cos(%2) Omega cos(zeta[k](t)) - R sin(%2) sin(zeta[k](t)) %1 

- R sin(%2) Omega sin(zeta[k](t)) + R cos(%2) cos(zeta[k](t)) %1 

] 
, 0] 

] 

d 
%1 := — zeta[k](t) 

dt 

%2 := Omega t + Phi[k] 

> TBk:=l/2*mb[k]*(V[l]A2+V[2]A2) ; 

///d        \ 
TBk := 1/2 mb[k] |||— u[l](t)| - sin(%2) Omega el 

\\\dt       / 

- R sin(%2) Omega cos(zeta[k](t)) - R cos(%2) sin(zeta[k](t)) %1 

- R cos(%2) Omega sin(zeta[k](t)) - R sin(%2) cos(zeta[k](t)) %1 

\2       //d \ 
I     +   | |~ u[2] (t) |   +  cos(%2)   Omega el 
/ Wdt / 

+ R cos(%2) Omega cos(zeta[k](t)) - R sin(%2) sin(zeta[k](t)) %1 

- R sin(%2) Omega sin(zeta[k](t)) + R cos(%2) cos(zetafk](t)) %1 

\2\ 
I I 
/ / 

d 
%1 := — zeta[k](t) 

dt 

%2 := Omega t + Phi[k] 

Potential energy for kth blade (UBk) 
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> UBkl:=l/2*Ke[k]*zeta[k](t)A2; #Linear Elastic Forces 

2 
UBkl := 1/2 Ke[k] zeta[k](t) 

> UBk2:=l/4*Kd[k]*zetafk](t)"4; #Duffing Elastic Forces 

4 
UBk2 := 1/4 Kd[k] zeta[k](t) 

> UBk3:=l/4*Ks[k]*signum(zeta[k] (t)-z)*(zetafk] (t)A2+zA2- 
2*zeta[k](t)*z)+l/4*Ks[k]*signum(zeta[k](t)+z)*(-zetafk](t)A2-z"2- 
2*zeta[k](t)*z)+l/2*Ks[k]*zeta[k](t)"2+l/2*Ks[k]*zA2; 

UBk3 := 

1/4 

2   2 
Ks[k] signum(zetafk](t) - z) (zetafk](t)  + z - 2 zetafk](t) z) 

+ 1/4 

2    2 
Ksfk] signum(zetafk](t) + z) (-zetafk](t)  - z  - 2 zetafk](t) z) 

2 2 
+ 1/2 Ksfk] zetafk](t)  + 1/2 Ksfk] z 

> UBk:=UBkl+UBk2 +UBk3; 
> UBk:=UBkl+UBk2; 

2 4 
UBk := 1/2 Kefk] zetafk](t)  + 1/4 Kdfk] zetafk](t) 

Dissapative function for kth blade (DBk) 

> 
DBk:=l/2*Czeta[k]*(diff(zetafk](t),t))A2+Vzeta[k]*(diff(zetafk](t),t) 
2*abs(diff(zetafk](t),t)) ; 

/d \2 
DBk := 1/2 Czetafk] |— zetafk] (t) | 

\dt / 

/d \2 | d | 
+ Vzetafk] |— zetafk] (t) |  j — zetafk] (t) j 

\dt /  I dt [ 

Energy of hub 
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Kinetic energy of hub (TH) / Potential energy of hub (UH) / Dissapative 
function of hub (DH) 

> TF:=l/2*M[l]*(diff(u[l](t),t))A2+l/2*M[2]*(diff(u[2](t),t))A2; 

/d \2 /d \2 
TF   :=   1/2  M[l]    |—  u[l](t)|      +1/2M[2]    |—  u[2](t)| 

\dt / \dt / 

> UF:=l/2*K[l]*u[l](t)A2+l/2*K[2]*u[2](t)A2; 

2 2 
UF   :=  1/2   K[l]   u[l](t)      +   1/2  K[2]   u[2](t) 

> 

DF:=l/2*c[l]*(diff(u[l](t),t))A2+l/2*c[2]*(diff(u[2](t),t))~2+l/2*v[l]* 
(diff(u[l](t),t))A2*abs(diff(u[l](t),t))+l/2*v[2]*(diff(u[2](t),t))A2*a 
bs(diff(u[2](t),t)); 

/d        \2 /d        \2 
DF := 1/2 c[l] |— u[l](t)|  + 1/2 c[2] |— u[2](t)| 

\dt       / \dt       / 

/d        \2 | d | 
+ 1/2 v[l] |— u[l](t)|  I — u[l](t) j 

\dt       /  j dt j 

/d        \2 | d | 
+ 1/2 v[2] |— u[2](t)|  j -- u[2](t) j 

\dt       /  I dt        I 

Generalized forces on generalized displacements 

> F[l]:=0; 

F[l]    :=   0 

> F[2]:=0; 

F[2]    :=   0 

> F[3]:=U[1]; 

F[3]    :=  u[l] 

> F[4]:=u[2]; 

F[4]    :=  u[2] 
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> F[5]:=u[3]; 

F[5] := u[3] 

Derivation of equations of motion using Lagrange's equation 

zeta[3](t)] 
DOFF:=[u[l](t),u[2](t)]: 
DOFB:=[zeta[l](t),zeta[2](t) 
DOF: = [op(DOFF),op(DOFB)] : 
dDOF:=diffl(DOF): 
ddDOF:=diffl(dDOF): 
setA:={}:setB:={>:setC:={}: 
setD:={}:setE:={}:setF:={}: 
DOFq:=[]:dDOFq:=[]:ddDOFq:=[]: 
for i from 1 to vectdim(DOF) do 
DOFq:=[op(DOFq),q[i]]: 
dD0Fq:=[op(dDOFq),dq[i]]: 
ddDOFq:=[op(ddDOFq),ddq[i]]: 
setA:=setA union {ddDOF[i]=ddDOFq[i]}: 

{dDOF[i]=dDOFq[i]}: 
{DOF[i]=DOFq[i]}: 
{ddDOFq[i]=ddDOF[i]}: 
{dDOFq[i]=dDOF[i]}: 

union {DOFqfi]=DOF[i]}: 
Od: 
setl:=setA union setB union setC; 

union 
union 

setB:=setB 
setC:=setC 
setD:=setD union 
setE:=setE union 
setF:=setF 

d d 
setl := {— u[l](t) = ddq[l], — u[l](t) = dq[l] , u[l](t) = q[l] , 

2 dt 
dt 

d d 
— u[2](t) = ddq[2], — u[2](t) = dq[2], u[2](t) = q[2], 

2 dt 
dt 

d d 
— zeta[l](t)   =  ddq[3],   —  zeta[l](t)   = dq[3],   zeta[l](t)   = q[3], 

2 dt 
dt 

d d 
—   zeta[2](t) = ddq[4],   —  zeta[2](t)   =  dq[4],   zeta[2](t)   = q[4] , 

2 dt 
dt 
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2 
d d 
— zeta[3](t) = ddg[5], — zeta[3](t) = dq[5], zeta[3](t) = q[5] 

2 dt 
dt 

} 

> set2:=setD union setE union setF; 

2 
d d 

set2 := {ddqtl] = — u[l](t), dq[l] = — u[l](t), q[l] = u[l](t), 
2 dt 

dt 

2 
d d 

ddq[2] = — u[2](t), dq[2] = — u[2](t), q[2] = u[2](t), 
2 dt 

dt 

2 
d d 

ddq[3] = — zeta[l](t), dq[3] = — zeta[l](t), q[3] = zeta[lj(t), 
2 dt 

dt 

2 
d d 

ddq[4] = — zeta[2](t), dq[4] = — zeta[2](t), q[4] = zeta[2](t), 
2 dt 

dt 

2 
d d 

ddq[5] = — zeta[3](t), dq[5] = — zeta[3](t), q[5] = zeta[3](t) 
2 dt 

dt 

} 

> T:=TF: 
> U:=UF: 
> D1:=DF: 
> for i from 1 to vectdim(DOFB) do 
> T:=T+subs(k=i,TBk): 
> U:=U+subs(k=i,UBk): 
> Dl:=Dl+subs(k=i,DBk): 
> od: 
> Temp:=subs(setl,T): 
> for i from 1 to vectdim(DOF) do 
> templ:=diff(Temp,dDOFq[i]): 
> temp2:=subs(set2,tempi): 
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> temp3:=diff(temp2,t): 
> LI:=subs{setl,temp3): 
> L2:=diff(Temp,DOFq[i]): 
> L3:=diff(subs(setl,U),DOFq[i]): 
> L4:=diff(subs(setl,Dl),dDOFq[i]): 
> EOM[i]:=simplify(Ll-L2+L3+L4-F[i]): 
> od: 
> sets:={signum(l,q[3]-z)=0,signum(l,q[4]-z)=0,signum(l,q[5]- 
z)=0,Signum(l,q[3]+z)=0,Signum(l,q[4]+z)=0,signum(l,q[5]+z)=0,abs(l,dq[ 
3])=0,abs(l,dq[4])=0,abs(l,dq[5])=0,abs(l,dq[l])=0,abs(l,dq[2])=0}: 
> A:=matrix(vectdim(DOF),vectdim(DOF)); 

A := array(1 .. 5, 1 .. 5, []) 

> for i from 1 to vectdim(DOF) do 
> for j from 1 to vectdim(DOF) do 
> A[i,j]:=coeff(EOM[i],ddDOFq[j]): 
> A[i,j]:=subs(setS,A[i,j]): 
> od: 
> od: 
> Ax2dot:=multiply(A,ddDOFq): 
> f:=array(1..vectdim(DOF)); 

f := array(1 .. 5, []) 

> for i from 1 to vectdim(DOF) do 
> f[i]:=-simplify(EOM[i]-Ax2dot[i]): 
> f[i]:=subs(setS,f[i]): 
> od: 
> xldot:=[]:xl:=[]: 
> for i from 1 to vectdim(DOF) do xldot:=[op(xldot),x[i]] od: 
> for i from vectdim(DOF)+1 to 2*vectdim(DOF) do xl:=[op(xl),x[i]] od: 
> setX:={}: 
> for i from 1 to vectdim(DOF) do 
> setX:=setX union {dDOFqfi]=xldot[i]}: 
> setX:=setX union {DOFq[i]=xl[i]}: 
> od: 
> interface(labelling=false); 
> Al:=subs(setX ,op(A)); 

Al : = 

[M[l]   + mb[l]   + mb[2]   + mb[3]    ,   0   , 

-mb[l]   R cos(%l)   sin(x[8])   - mb[l]   R sin(%l)   cos(x[8])   , 

-mb[2]   R cos(%2)   sin(x[9])   - mb[2]   R sin(%2)   cos(x[9])   , 

-mb[3]   R cos(%3)   sin(x[10])   - mb[3]   Rsin(%3)   cos(x[10])] 

[0   ,   M[2]   + mb[l]   + mb[2]   + mb[3]   , 

-mb[l]   R sin(%l)   sin(x[8])   + mb[l]   R cos(%l)   cos(x[8])   , 
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-mb[2]   R sin(%2)   sin(x[9])   +mb[2]   Rcos(%2)   cos(x[9])   , 

-mb[3]   R sin(%3)   sin(x[10])   + mb[3]   Rcos(%3)   cos(x[10])] 

[ 
[-mb[l]   R cos(%l)   sin(x[8])   - mb[l]   R sin(%l)   cos(x[8])   , 

2 
-mb[l]   R sin(%l)   sin(x[8])   + mb[l]   Rcos(%l)   cos(x[8])    ,   mb[l]   R 

] 
,0,0] 

[ 
[-mb[2]   R cos(%2)   sin(x[9])   - mb[2]   R sin(%2)   cos(x[9])   , 

-mb[2]   R sin(%2)   sin(x[9])   + mb[2]   Rcos(%2)   cos(x[9])    ,   0   , 

2 ] 
mb[2]   R     ,   0] 

[ 
[-mb[3]   R cos(%3)   sin(x[10])   - mb[3]   Rsin(%3)   cos(x[10])    , 

-mb[3]   R sin(%3)   sin(x[10])   + mb[3]   Rcos(%3)   cos(x[10])   ,0,0 

2] 
,   mb[3]   R  ] 

%1 := Omega t + Phi[l] 

%2 := Omega t + Phi[2] 

%3 := Omega t + Phi[3] 

> fl:=subs(setX ,op(f)); 

[ 
fl   :=   [-K[l]   x[6]   -  c[l]   x[l]   -  v[l]   x[l]    |   x[l]    | 

2 2 
+ mb[l] cos{%2) Omega el + mb[l] R cos(%2) Omega cos(x[8]) 

- 2 mb[l] R sin(%2) Omega sin(x[8]) x[3] 

2 
+ mb[l] R cos(%2) cos{x[8]) x[3] 

2 
- mb[l]   R sin(%2)   Omega    sin(x[8]) 

+ 2 mb[l]   R cos(%2)   Omega cos(x[8])   x[3] 

2 2 
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- mb[l] R sin(%2) sin(x[8]) x[3]  + mb[2] cos(%l) Omega el 

2 
+ mb[2] R cos(%l) Omega cos(x[9]) 

- 2 mb[2] R sin(%l) Omega sin(x[9]) x[4] 

2 
+ mb[2] R cos(%l) cos(x[9]) x[4] 

2 
- mb[2] R sin(%l) Omega  sin(x[9]) 

+ 2 mb[2] R cos(%l) Omega cos(x[9]) x[4] 

2 2 
- mb[2] R sin(%l) sin(x[9]) x[4]  + mb[3] cos(%3) Omega el 

2 
+ mb[3]   R cos(%3)   Omega    cos(x[10]) 

- 2 mb[3]   R sin(%3)   Omega  sin{x[10])   x[5] 

2 
+ mb[3]   R cos(%3)   cos(x[10])   x[5] 

2 
- mb[3]   R sin(%3)   Omega    sin(x[10]) 

+  2  mb[3]   R cos(%3)   Omega  cos(x[10])   x[5] 

2 
- mb[3]   R sin(%3)   sin(x[10])   x[5]   ,   -c[2]   x[2]   -  K[2]   x[7] 

2 
- v[2]   x[2]    |   x[2]    |   + mb[2]   R cos(%l)   Omega     sin(x[9]) 

+  2 mb[2]   R sin(%l)   Omega cos{x[9])   x[4] 

2 2 
+ mb[2]   R cos(%l)   sin(x[9])   x[4]     + mb[3]   sin(%3)   Omega    el 

2 
+ mb[3]   R sin(%3)   Omega    cos(x[10]) 

+  2 mb[3]   R cos(%3)   Omega  sin(x[10])   x[5] 

2 
+  mb[3]   R  sin(%3)   cos(x[10])   x[5] 

2 
+ mb[3]   R cos(%3)   Omega     sin(x[10]) 

+  2 mb[3]   R sin(%3)   Omega cos(x[10])   x[5] 
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2 2 
+ mb[3]   R cos(%3)   sin(x[10])   x[5]     + mb[l]   sin(%2)   Omega    el 

2 
+ mb[l]   R sin(%2)   Omega    cos(x[8]) 

+ 2 mb[l] R cos(%2) Omega sin(x[8]) x[3] 

2 
+ mb[l] R sin(%2) cos(x[8]) x[3] 

2 
+ mb[l] R cos(%2) Omega sin(x[8]) 

+ 2 mb[l] R sin(%2) Omega cos(x[8]) x[3] 

2 2 
+ mb[l] R cos(%2) sin(x[8]) x[3]  + mb[2] sin(%l) Omega el 

2 
+ mb[2] R sin(%l) Omega  cos(x[9]) 

2 
+ mb[2] R sin(%l) cos(x[9]) x[4] 

+ 2 mb[2] R cos(%l) Omega sin(x[9]) x[4], 

2 
-2 Vzeta[l] x[3] | x[3] | - mb[l] Omega el R sin(x[8]) + u[l] 

3 3 
- Ke[l]   x[8]   - Kd[l]   x[8]     - Czeta[l]   x[3],   -Kd[2]   x[9] 

- Czeta[2]   x[4]   -  Ke[2]   x[9]   -  2 Vzeta[2]   x[4]    |   x[4]    |   + u[2] 

2 
- mb[2]   Omega     el  R sin(x[9]),   -2  Vzeta[3]   x[5]    |   x[5]    |   +  u[3] 

3 
- Ke[3]   x[10]   -  Kd[3]   x[10]     - Czeta[3]   x[5] 

2 ] 
- mb[3] Omega el R sin(x[10])] 

%1 := Omega t + Phi[2] 

%2 := Omega t + Phi[l] 

%3 := Omega t + Phi[3] 

> realib(fortran): 
> B:=augment(Al,f1): 
> fortran(B,optimized); 
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>  fortran(B); 
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APPENDIX E - EQUATIONS OF MOTION FOR COLEMAN MODEL 

mb[3]*R*sin(Omega*t+Phi[3])*sin(q[5])*dq[5]A2- 
mb[3]*R*sin(Omega*t+Phi[3])*cos(q[5])*ddq[5]+mb[2]*R*sin(Omega*t+Phi[2])*Ome 
gaA2*sin(q[4])- 
2*mb[2]*R*cos(Omega*t+Pbi[2])*Omega*cos(q[4])*dq[4]+mb[2]*R*sin(Omega*t+Phi 
[2])*sin(q[4])*dq[4]A2-mb[2]*R*sin(Omega*t+Phi[2])*cos(q[4])*ddq[4]- 
mb[3]*cos(Omega*t+Phi[3])*OmegaA2*el- 
mb[3]*R*cos(Omega*t+Pbi[3])*OmegaA2*cos(q[5])+2*mb[3]*R*sin(Omega*t+Phi[3]) 
*Omega*sin(q[5])*dq[5]-mb[3]*R*cos(Omega*t+Phi[3])*cos(q[5])*dq[5]A2- 
mb[3]*R*cos(Omega*t+Phi[3])*sin(q[5])*ddq[5]+mb[3]*R*sin(Omega*t+Phi[3])*Ome 
gaA2*sin(q[5])- 
mb[l]*R*cos(Omega*t+Phi[l])*OmegaA2*cos(q[3])+2*mb[l]*R*sin(Omega:|:t+Phi[l]) 
*Omega*sin(q[3])*dq[3]-mb[l]*R*cos(Omega*t+Phi[l])*cos(q[3])*dq[3]A2- 
mb[l]*R*cos(Omega*t+Phi[l])*sin(q[3])*ddq[3]+mb[l]*R*sin(Omega*t+Phi[l])*Ome 
gaA2*sin(q[3])- 
2*mb[l]*R*cos(Omega*t+Phi[l])*Omega*cos(q[3])*dq[3]+mb[l]*R*sin(Omega*t+Phi 
[l])*sin(q[3])*dq[3]A2-mb[l]*R*sin(Omega*t+Phi[l])*cos(q[3])*ddq[3]- 
mb[2] *cos(Omega*t+Phi[2])*OmegaA2*e 1 - 
mb[2]*R*cos(Omega*t+Phi[2])*OmegaA2*cos(q[4])+2*mb[2]*R*sin(Omega*t+Phi[2]) 
*Omega*sin(q[4])*dq[4]-mb[2]*R*cos(Omega*t+Phi[2])*cos(q[4])*dq[4]A2- 
mb[2]*R*cos(Omega*t+Pbi[2])*sin(q[4])*ddq[4]- 
mb[l]*cos(Omega*t+Phi[l])*OmegaA2*el- 
2*mb[3]*R*cos(Omega*t+Phi[3])*Omega*cos(q[5])*dq[5]+K[l]*q[l]+v[l]*dq[l]*abs( 
dq[l])+M[l]*ddq[l]+l/2*v[l]*dq[l]A2*abs(l,dq[l])+c[l]*dq[l]+mb[l]*ddq[l]+mb[2]* 
ddq[l]+mb[3]*ddq[l]=0 

mb[l]*ddq[2]+mb[3]*ddq[2]-mb[3]*R*cos(Omega*t+Phi[3])*OmegaA2*sin(q[5])- 
2*mb[3]*R*sin(Omega*t+Phi[3])*Omega*cos(q[5])*dq[5]- 
mb[3]*R*cos(Omega*t+Phi[3])*sin(q[5])*dq[5]A2+mb[3]*R*cos(Omega*t+Phi[3])*cos 
(q[5])*ddq[5]-mb[3]*R*sin(Omega*t+Phi[3])*OmegaA2*cos(q[5])- 
2*mb[3]*R*cos(Omega*t+Phi[3])*Omega*sin(q[5])*dq[5]- 
mb[3]*R*sin(Omega*t+Phi[3])*sin(q[5])*ddq[5]- 
2*mb[2]*R*sin(Omega*t+Phi[2])*Omega*cos(q[4])*dq[4]- 
mb[3]*R*sin(Omega*t+Phi[3])*cos(q[5])*dq[5]A2- 
mb[l]*sin(Omega*t+Phi[l])*OmegaA2*el- 
mb[l]*R*sin(Omega*t+Phi[l])*OmegaA2*cos(q[3])- 
2*mb[l]*R*cos(Omega*t+Phi[l])*Omega*sin(q[3])*dq[3]- 
mb[l]*R*sin(Omega*t+Phi[l])*cos(q[3])*dq[3]A2- 
mb[l]*R*sin(Omega*t+Phi[l])*sin(q[3])*ddq[3]- 
mb[l]*R*cos(Omega*t+Phi[l])*OmegaA2*sin(q[3])- 
2*mb[l]*R*sin(Omega*t+Phi[l])*Omega*cos(q[3])*dq[3]- 
2*mb[2]*R*cos(Omega*t+Phi[2])*Omega*sin(q[4])*dq[4]- 
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mb[2]*R*sin(Omega*t+PW[2])*cos(q[4])*dq[4]A2- 
mb[2]*R*sin(Omega*t+Phi[2])*sin(q[4])*ddq[4]- 
mb[2]*R*cos(Omega*t+Phi[2])*OmegaA2*sin(q[4])- 
mb[l]*R*cos(Omega*t+Phi[l])*sin(q[3])*dq[3]A2+mb[l]*R*cos(Omega*t+Phi[l])*cos 
(q[3])*ddq[3]-mb[2]*sin(Omega*t+Phi[2])*OmegaA2*el- 
mb[2]*R*sin(Omega*t+Phi[2])*OmegaA2*cos(q[4])- 
mb[3]*sin(Omega*t+Pbi[3])*OmegaA2*el- 
mb[2]*R*cos(Omega*t+Pbi[2])*sin(q[4])*dq[4]A2+mb[2]*R*cos(Omega*t+Phi[2])*cos 
(q[4])*ddq[4]+M[2]*ddq[2]+mb[2]*ddq[2]+l/2*v[2]*dq[2]A2*abs(l,dq[2])+K[2]*q[2]+ 
c[2]*dq[2]+v[2]*dq[2]*abs(dq[2])=0 

2*Vzeta[l]*dq[3]*abs(dq[3])- 
u[l]+mb[l]*ddq[2]*R*cos(Omega*t+Phi[l])*cos(q[3])+mb[l]*RA2*ddq[3]- 
mb[l]*ddq[l]*R*cos(Omega*t+Phi[l])*sin(q[3])- 
mb[l]*ddq[l]*R*sin(Omega*t+Phi[l])*cos(q[3])- 
mb[l]*ddq[2]*R*sin(Omega*t+Pbi[l])!,!sin(q[3])+mb[l]*OmegaA2*el*R*sin(q[3])+Vze 
ta[l]*dq[3]A2*abs(l,dq[3])+Ke[l]*q[3]+Kd[l]*q[3]A3+Czeta[l]*dq[3]=0 

mb[2]*OmegaA2*el *R*sin(q[4])- 
mb[2]*ddq[l]*R*sin(Omega*t+Phi[2])*cos(q[4])+mb[2]*ddq[2]*R*cos(Omega*t+Phi[2 
])*cos(q[4])+mb[2] *RA2*ddq[4]- 
mb[2]*ddq[2]*R*sin(Omega*t+Phi[2])*sin(q[4])+Vzeta[2]*dq[4]A2*abs(l,dq[4])- 
u[2]+Ke[2]*q[4]+Kd[2]*q[4]A3+Czeta[2]*dq[4]+2*Vzeta[2]*dq[4]*abs(dq[4])- 
mb[2]*ddq[l]*R*cos(Omega*t+Phi[2])*sin(q[4])=0 

-u[3]-mb[3]*ddq[l]*R*cos(Omega*t+Phi[3])*sin(q[5])- 
mb[3]*ddq[l]*R*sin(Omega*t+Phi[3])*cos(q[5])+mb[3]*OmegaA2*el*R*sin(q[5])+mb 
[3]*RA2*ddq[5]- 
mb[3]*ddq[2]*R*sin(Omega*t+Phi[3])*sin(q[5])+mb[3]*ddq[2]*R*cos(Omega*t+Phi[3 
])*cos(q[5])+2*Vzeta[3]*dq[5]*abs(dq[5])+Vzeta[3]*dq[5]A2*abs(l,dq[5])+Ke[3]*q[5]+ 
Kd[3]*q[5]A3+Czeta[3]*dq[5]=0 
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APPENDIX F - SIMPLIFIED ROTOR/FUSELAGE EQUATIONS OF MOTION 

Equations with viscous and hydraulic damping in the hub 
degrees of freedom, x and y. [Ref. 19] 

Mx *x + Cx *x+Vx *x*\x\ + Kx *x 

= mbl *R*(Ci *sin(¥, + £) + (Q + £)2 *cos(^, +£) 

+ mb2 *R*(£2*smC¥2+£2) + (a + £2)
2 *co&Q¥2+C2) 

+ mb3 *R*(£3 *sin(^3 + £3) + (Q + £3)
2 *cos(T3 + £3) 

My*y + Cy*y + Vy*y*\y\ + Ky*y 

= mbx *R*(£1 *smC¥l+C1)-& + £i)2 *sin(^, + A) 
+ mfc2 *Ä*(& *sin(Y2 +^2)-(Q + 4)2 *sin(^2 + £2) 

mbj *R2 *£ +Cfl *£ + K«, *£ + mfc, *Q2 * e * R * sin(£) 

= mfc, *x*Ä*sinOF, +^1)-mft1 *y*R*cos(x¥l + £) 

mb2*R2*£2+CC2*£2+Ke2*£2+mb2*Q2*e*R*sm(£2) 

= mb2*x*R*sm.C¥2 + £2)-mb2*y*R*cosC¥2+g2) 

mb3 *R2 *^3+C^3 *^3+Ke3 *^3+mi3 *Q2 *e*R*sin(^3) 

= mb3 * x* R*smC¥3 + g^-mbi* y* R*cosC¥3 + £3) 
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APPENDIX 6-5  BLADED EQUATIONS  OF MOTION WITH  POLYNOMIAL 
SNUBBER  FUNCTIONS 

mb[4]   R sin(Omega t  + Phi[4])   Omega    sin{q[6] 

- 2 mb[4]   R cos(Omega t +  Phi 

+ mb[4]   R sin(Omega t +  Phi[4 

- mb[4]   R sin(Omega t +  Phi[4 

- mb[5]   cos(Omega t + Phi[5]) 

- mb[5]   R cos(Omega t +  Phi[5 

+  2 mb[5]   R sin(Omega t  +  Phi 

- 2 mb[5]   R cos(Omega t  +  Phi 

- mb[2]   R cos(Omega t +  Phi[2 

- mb[2]   R cos(Omega t + Phi[2 

+ mb[2]   R sin(Omega t +  Phi[2 

- 2  mb[2]   R cos(Omega t  +   Phi 

+ mb[2]   R sin(Omega t +  Phi[2 

- mb[2]   R sin(Omega t +  Phi[2 

- mb[3]   R cos(Omega t +  Phi[3 

+  2 mb[3]   R sin(Omega t  +  Phi 

- mb[3]   R cos(Omega t +  Phi[3 

- mb[3]   R cos(Omega  t +  Phi[3 

+ mb[3]   R sin(Omega  t +  Phi[3 

- 2 mb[3]   R cos(Omega t  +  Phi 

4])   Omega cos(g[6])   dq[6] 

2 
)   sin(q[6])   dq[6] 

)   cos(q[6])   ddq[6] 

2 
Omega    el 

2 
)   Omega    cos(q[7]) 

5])   Omega sin(q[7])   dq[7] 

5])   Omega cos(q[7])   dq[7] 

2 
)   cos(q[4])   dq[4] 

)   sin(q[4])   ddq[4] 

2 
)   Omega     sin(q[4]) 

2])   Omega cos(q[4])   dq[4] 

2 
)   sin(q[4])   dq[4] 

)   cos(q[4])   ddq[4] 

2 
)   Omega    cos(q[5]) 

3])   Omega sin(q[5])   dq[5] 

2 
)   cos(q[5])   dq[5] 

)   sin(q[5])   ddq[5] 

2 
)   Omega     sin(q[5]) 

3])   Omega cos(q[5])   dq[5] 
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2 
- mb[l] cos(Omega t + Phi[l]) Omega el 

2 
- mb[l] R cos(Omega t + Phi[l]) Omega cos(q[3]) 

+ 2 mb[l] R sin(Omega t + Phi[l]) Omega sin(q[3]) dq[3] 

2 
- mb[l] R cos(Omega t + Phi[l]) cos(q[3]) dq[3] 

- mb[l] R cos(Omega t + Phi[l]) sin(q[3]) ddq[3] 

2 
+ mb[l] R sin(Omega t + Phi[l]) Omega sin(q[3]) 

- 2 mb[l] R cos(Omega t + Phi[l]) Omega cos(q[3]) dq[3] 

2 
+ mb[l] R sin(Omega t + Phi[l]) sin(q[3]) dq[3] 

- mbtl] R sin(Omega t + Phi[l]) cos(q[3]) ddq[3] 

2 
- mb[2] cos(Omega t + Phi[2]) Omega el 

2 
- mb[2] R cos(Omega t + Phi[2]) Omega cos(q[4]) 

2 
- mb[3] cos(Omega t + Phi[3]) Omega el 

+ 2 mb[2] R sin(Omega t + Phi[2]) Omega sin(q[4]) dq[4] 

2 
+ mb[3] R sin(Omega t + Phi[3]) sin(q[5]) dq[5] 

- mb[5] R cos(Omega t + Phi[5]) sin(q[7]) ddq[7] 

2 
+ mb[5] R sin(Omega t + Phi[5]) Omega  sin(q[7]) 

2 
+ mb[5] R sin(Omega t + Phi[5]) sin(q[7]) dq[7] 

- mb[5] R sin(Omega t + Phi[5]) cos(q[7]) ddq[7] 

- mb[3] R sin(Omega t + Phi[3]) cos(q[5]) ddq[5] 

2 
- mb[4] cos(Omega t + Phi[4]) Omega el 

2 
- mb[4] R cos(Omega t + Phi[4]) Omega  cos(q[6]) 
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+ 2 mb[4] R sin(Omega t + Phi[4]) Omega sin(q[6]) dq[6] 

2 
- mb[4]   R cos(Omega  t  +  Phi[4])   cos(q[6])   dq[6]      -  u[l] 

+ mb[5] ddq[l] + mb[4] ddq[l] 

+ mb[2] ddq[l] + M[l] ddq[l] + mb[l] ddq[l] 

+ v[l] dq[l] | dq[l] | + mb[3] ddq[l] + K[l] q[l] + c[l] dq[l] 

- mb[4] R cos(Omega t + Phi[4]) sin(q[6]) ddq[6] 

2 
- mb[5] R cos(Omega t + Phi[5]) cos(q[7]) dq[7]  = 0 

v[2] dq[2] | dq[2] | 

- 2 mb[3] R cos(Omega t + Phi[3]) Omega sin(q[5]) dq[5] 

2 
- mb[3]   R  sin(Omega  t  +  Phi[3])   cos(q[5])   dq[5] 

- mb[3]   R sin(Omega t  +  Phi[3])   sin(q[5])   ddq[5] 

2 
- mb[3] R cos(Omega t + Phi[3]) Omega sin(q[5]) 

- 2 mb[5] R cos(Omega t + Phi[5]) Omega sin(q[7]) dq[7] 

2 
- mb[5] R sin(Omega t + Phi[5]) cos(q[7]) dq[7] 

- mb[5] R sin(Omega t + Phi[5]) sin(q[7]) ddq[7] 

2 
- mb[5] R cos(Omega t + Phi[5]) Omega  sin(q[7]) 

- 2 mb[5] R sin(Omega t + Phi[5]) Omega cos(q[7]) dq[7] 

2 
- mb[5] R cos(Omega t + Phi[5]) sin(q[7]) dq[7] 

+ mb[5] R cos(Omega t + Phi[5]) cos(q[7]) ddq[7] 

- 2 mb[3] R sin(Omega t + Phi[3]) Omega cos(q[5]) dq[5] 

2 
- mb[3] R cos(Omega t + Phi[3]) sin(q[5]) dq[5] 

+ mb[3] R cos(Omega t + Phi[3]) cos(q[5]) ddq[5] 
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_ mb[4] 

- mb[4] 

- 2 mb[ 

- mb[4] 

- mb[4] 

- mb[4] 

- 2 mb[ 

- mb[4] 

+ mb[4] 

- mb[5] 

- mb[l] 

- mb[l] 

- 2 mb[ 

- mb[l] 

- mb[l] 

- mb[l] 

- 2 mb[ 

- mb[l] 

+ mb[l] 

- mb[2] 

„ mb[2] 

sin(Omega t + Phi[4]) Omega el 

2 
R sin(Omega t + Phi[4]) Omega cos(q[6]) 

4] R cos(Omega t + Phi[4]) Omega sin(q[6]) dq[6] 

2 
R sin(Omega t + Phi[4]) cos(q[6]) dq[6] 

R sin(Omega t + Phi[4]) sin(q[6]) ddq[6] 

2 
R cos(Omega t + Phi[4]) Omega  sin(q[6]) 

4] R sin(Omega t + Phi[4]) Omega cos(q[6]) dq[6] 

2 
R cos(Omega t + Phi[4]) sin(q[6]) dq[6] 

R cos(Omega t + Phi[4]) cos(q[6]) ddq[6] 

2 
sin(Omega t + Phi[5]) Omega el 

2 
sin(Omega t + Phi[l]) Omega el 

2 
R sin(Omega t + Phi[l]) Omega cos(q[3]) 

1] R cos(Omega t + Phi[l]) Omega sin(q[3]) dq[3] 

2 
R sin(Omega t + Phi[l]) cos(q[3]) dq[3] 

R sin(Omega t + Phi[l]) sin(q[3]) ddq[3] 

2 
R cos(Omega t + Phi[l]) Omega  sin(q[3]) 

1] R sin(Omega t + Phi[l]) Omega cos(q[3]) dq[3] 

2 
R cos(Omega t + Phi[l]) sin(q[3]) dq[3] 

R cos(Omega t + Phi[l]) cos(q[3]) ddq[3] 

2 
sin(Omega t + Phi[2]) Omega el 

2 
R sin(Omega t + Phi[2]) Omega cos(q[4]) 
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- 2 mb[2] R cos(Omega t + Phi[2]) Omega sin(q[4]) dq[4] 

2 
- mb[2] R sin(Omega t + Phi[2]) cos(q[4]) dq[4] 

- mb[2] R sin(Omega t + Phi[2]) sin(q[4]) ddq[4] 

2 
- mb[2] R cos(Omega t + Phi[2]) Omega sin(q[4]) 

- 2 mb[2] R sin(Omega t + Phi[2]) Omega cos(q[4]) dq[4] 

2 
- mb[2] R cos(Omega t + Phi[2]) sin(q[4]) dq[4] 

+ mb[2] R cos(Omega t + Phi[2]) cos(q[4]) ddq[4] 

2 
- mb[3] sin(Omega t + Phi[3]) Omega el 

2 
- mb[5]   R sin(Omega t  + Phi[5])   Omega    cos(q[7])   + mb[2]   ddq[2] 

+ M[2]   ddq[2]   -  u[2]   +  K[2]   q[2] 

2 
+ c[2]   dq[2]   - mb[3]   R sin(Omega t + Phi[3])   Omega    cos(q[5]) 

+ mb[l]   ddq[2]   + mb[5]   ddq[2]   + mb[3]   ddq[2]   + mb[4]   ddq[2]   =  0 

mb[l]   ddq[2]   R  sin(Omega  t  +  Phi[l])   sin(q[3]) 

+ mb[l]   ddq[2]   R cos(Omega t +  Phi[l])   cos(q[3]) 

- mb[l]   ddq[l]   R cos(Omega t +  Phi[l])   sin(q[3]) 

- mb[l]   ddq[l]   R sin(Omega t +  Phi[l])   cos(q[3]) 

2 2 
+ mb[l]   Omega    el R sin(q[3])   + mb[l]   R    ddq[3]   + q[3]   Kpolyf5] 

+  dq[3]   Cpoly[5] 

3 
+  q[3]   Kpoly[2]    |   q[3]    |      +  q[3]   Kpoly[4]    |   q[3]    | 

3 
+  dq[3]   Cpoly[2]    |   q[3]    |      +  dq[3]   Cpoly[4]    |   q[3]    | 

2 4 5 
+  dq[3]   Cpoly[3]   q[3]      +  dq[3]   Cpolyfl]   q[3]      +  3   q[3]      Kpoly[l] 
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3 
+ 2 q[3]  Kpoly[3] - u[3] = 0 

2 
mb[2] Omega el R sin(q[4]) 

- mb[2] ddq[l] R cos(Omega t + Phi[2]) sin(q[4]) 

- mb[2] ddq[l] R sin(Omega t + Phi[2]) cos(q[4]) 

- mb[2] ddq[2] R sin(Omega t + Phi[2]) sin(q[4]) 

+ mb[2] ddq[2] R cos(Omega t + Phi[2]) cos(q[4]) 

3 5 
+ 2 q[4]  Kpoly[3] + 3 q[4]  Kpolyfl] + q[4] Kpoly[5] 

2 
+ dq[4] Cpoly[5] + mb[2] R ddq[4] - u[4] + dq[4] Cpolyfl] q[4] 

3 
+ q[4] Kpoly[2] | q[4] |  + q[4] Kpoly[4] | q[4] | 

+ dq[4] Cpoly[4] | q[4] | 

3 2 
+ dg[4] Cpoly[2] | q[4] |  + dq[4] Cpoly[3] q[4]  = 0 

2 
mb[3] R ddq[5] 

- mb[3] ddq[2] R sin(Omega t + Phi[3]) sin(q[5]) 

+ mb[3] ddq[2] R cos(Omega t + Phi[3]) cos(q[5]) 

- mb[3] ddq[l] R cos(Omega t + Phi[3]) sin(q[5]) 

- mb[3] ddq[l] R sin(Omega t + Phi[3]) cos(q[5]) 

2 
+ mb[3] Omega el R sin(q[5]) 

4 3 
+ dq[5] Qpoly[l] q[5]  - u[5] + dq[5] Cpoly[2] | q[5] | 

+ dq[5] Cpoly[4] | q[5] | + q[5] Kpoly[4] | q[5] | 

3 2 
+ q[5] Kpoly[2] | q[5] |  + dq[5] Cpoly[3] q[5] 

5 3 
+ 3 q[5]  Kpoly[l] + 2 q[5]  Kpoly[3] + q[5] Kpoly[5] 
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+ dq[5] Cpoly[5] = 0 

3 
q[6] Kpoly[2] | q[6] | 

3 
+ q[6] Kpoly[4] | q[6] | + dq[6] Cpoly[2] | q[6] | 

2 
+ dq[6]   Cpoly[4]    |   q[6]    |   + dq[6]   Cpoly[3]   q[6] 

4 
+ dq[6]   Cpolyfl]   q[6]     + dq[6]   Cpoly[5]   +  q[6]   Kpoly[5]   -  u[6] 

5 3 
+  3   q[6]     Kpoly[l]   +  2   q[6]      Kpoly[3] 

+ mb[4] ddq[2] R cos(Omega t  +  Phi[4]) cos(q[6]) 

- mb[4] ddq[2] R sin(Omega  t   +   Phi[4]) sin(q[6]) 

- mb[4] ddq[l] R sin(Omega t  +  Phi[4]) cos(q[6]) 

- mb[4] ddq[l] R cos(Omega t  +  Phi[4]) sin(q[6]) 

2 2 
+ mb[4]   Omega     el  R  sin(q[6])   + mb[4]   R     ddq[6]   =   0 

2 2 
mb[5] R ddq[7] + mb[5] Omega el R sin(q[7]) 

- mb[5] ddq[l] R cos(Omega t + Phi[5]) sin(q[7]) 

- mb[5] ddq[l] R sin(Omega t + Phi[5]) cos(q[7]) 

- mb[5] ddq[2] R sin(Omega t + Phi[5]) sin(q[7]) 

+ mb[5] ddq[2] R cos(Omega t + Phi[5]) cos(q[7]) 

2 
+ dq[7] Cpoly[3] q[7]  + dq[7] Cpoly[4] | q[7] | 

3 
+ dq[7] Cpoly[2] | q[7] | 

3 
+ q[7] Kpoly[4] | q[7] | + q[7] Kpoly[2] | q[7] | 

4 5 
+ dq[7] Cpolyll] q[7]  - u[7] + 3 q[7]  Kpoly[l] 
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3 
+ 2 g[7]  Kpoly[3] + q[7] Kpoly[5] + dq[7] Cpoly[5] = 0 
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APPENDIX H - 5 BLADED POLYNOMIAL S-FUNCTION INPUT FILE 

function [II,12,13,14,15,16]=poly5in 
% This m-file serves as input file for running the simulink 
% S-function simple5p.m for the 5 bladed RAH-66 Wind Tunnel Model. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Helo Physical and Aerodynamic parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Equivalent Length of rotor blade (length). 

R=26.5445; % inches 

% Rotor speed (radians per/sec) 

Omega=870*(2*pi/60);    % Run # 

% Hinge offset (length). 

el=8.5235; % inches (9.804, 7.6898 ??) 

% Lead/lag stop position (rad). 

z=pi; 

% Mass of rotor blades (mass). 

mb(l)=0.013074; % slugs 
mb(2)=0.013074 
mb(3)=0.013074 
mb(4)=0.013074 
mb(5)=0.013074 

% Effective mass of fuselage. 

h=0.610; % hub offset in meters 
M(l)=3.504/hA2*0.06852; % convert fuselage inertia to equivalent 
M(2)=7.495/h~2*0.06852; % mass at hub & convert to slugs 

% Blade azimuth phase angles (radians) 

Phi(l)=0; 
Phi(2)=2*pi/5 
Phi(3)=4*pi/5 
Phi(4)=6*pi/5 
Phi(5)=8*pi/5 

% Blade Parameters 

%     Spring stiffness polynomial for lead-lag (moment/radian) 
% snubber stiffness(lb/in) * geogain(in/rad) * (el- 

r_snub)(in) 
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gg=5.1121; % geometric gain of snubber movement from lag, in/rad 
%     Kpoly=[0,0,0,0,79.71*gg+660.9141]*(el-2.5984); % linearized 1995 
snubber 

Kbeam=[0 0 0 0 660.9141]; % original Myklestad output 
%      Ksnub=[38512436.84*ggA5,-4491019.58*ggA4,183336.70*ggA3,- 
3147.25*ggA2  
%        79.71*gg]*(el-2.5984); 

% 1995 snubber 
Ksnub=[336241084.22*ggA5,-38666827.45*ggA4,1547897.06*ggA3,- 

26483.84*ggA2,... 
233.32*gg]*(el-2.5984); 

% 1992 snubber 
%      Kpoly=Kbeam+Ksnub; 

Kpoly=2.5*(Kbeam+Ksnub); 

%     Lead-lag stop spring constants (moment/radian) 

Ks(l)=0 
Ks(2)=0 
Ks(3)=0 
Ks(4)=0 
Ks(5)=0 

%     Linear damping in lead-lag (moment/(rad/sec)) 
% snubber damping(lb*s/in) * geogain(in/rad) * (el- 

r_snub)(in) 

%     Cpoly=[0,0,0,0,0.59*gg]*(el-2.5984); % 
linearized 1995 snubber 
%      Cpoly=[116695.68*ggA5,-14022.78*ggA4,609.0*ggA3,- 
12.05*ggA2,0.59*gg]... 
% *(el-2.5984); 

% 1995 snubber 
Cpoly=[-842875.01*ggA5,87576.78*ggA4,- 

2847.07*ggA3,25.01*ggA2,0.47*gg]... 
*(el-2.5984); 

% 1992 snubber 
Cpoly=2 *Cpoly; 

% Fuselage Parameters 

%     Linear springs in translation (force/length) 

K(l)=1416.6/hA2*.2248/39.37*12*1.14; % convert rotary 
spring to lateral 

K(2)=1183.5/hA2*.2248/39.37*12; % spring at hub plane & 
convert to lbf/in 

%     Linear damping in translation (force/(length/sec)) 
% convert rotary damping to lateral 
% damping at hub plane & convert to lbf/in/s 

% ?      c(l)=2*0.254/hA2*sqrt(18.43/0.254-(1.15*2*pi)A2)*.06852; 
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% ?      c(2)=2*3.75/hA2*sqrt(64.05/3.75-(0.65*2*pi)A2)*.06852; 
% c(l)=6.58*0.22481*39.37/hÄ2; 
% c(2)=10.21*0.22481*39.37/hA2; 

C=M*2.*[0.0467,0.0542].*sqrt(K./M); 

%     Non-linear damping in translation(force/(length/sec)"2) 

v(l)=0; 
v(2)=0; 

% Initial conditions 

Blade lead-lag displacement (radians) 

xli=0 
x2i=0 
x3i=0 
x4i=0 
x5i=0 

% Blade lead-lag rates (radians/sec) 

xrli=0 
xr2i=0 
xr3i=0 
xr4i=0 
xr5i=0 

Fuselage translational displacements (length) 

xXi=0.1; 
xYi=0.1; 

Fuselage translational rates (length/sec) 

xrXi=0; 
xrYi=0; 

% Create input arrays: 

11 = [mb, M] ; 

12 = [R,Omega,el,z]; 

13 = Phi; 

14 = [c, v, Cpoly] ; 

15 = [Kpoly, Ks, K]; 

16 = [xrXi,xrYi,xrli,xr2i,xr3i,xr4i,xr5i,xXi,xYi,xli,x2i,x3i,x4i,x5i]; 
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APPENDIX I - 5 BLADED POLYNOMIAL S-FUNCTION 

function [sys, xO] = blade5p(t,x,u,flag,II,12,13,14,15,16) 

% 
%  S-function arguments: 
%    

% t     =  time 
% x     = state vector 
% u     =  input vector 
% flag  =  switch used by numerical integration (simulation) 
% routine to access certain parts of the s-function 
% 
% S-function input parameters: 
%   

% 
% II    =  [mb(l),mb(2),mb{3),mb(4),mb(5),M(1),M(2)] 
% 
% 12    =  [R,Omega, el, z] 
% 
% 13    =  [Phi(1),Phi(2),Phi(3),Phi(4),Phi(5)]] 
% 
% 14    =  [c(l),c(2),v(l),v(2), 
% Cpoly(l),Cpoly(2),Cpoly(3),Cpoly(4),Cpoly(5)] 

%   15     =  [Kpoly(l),Kpoly(2),Kpoly(3),Kpoly(4),Kpoly(5), 
% Ks(l),Ks(2),Ks(3),Ks(4),Ks(5), 
% K(1),K(2)] 
% 
%  16    =  [xrXi,xrYi,xrli,xr2i,xr3i,xr4i,xr5i, 
% xXi,xYi,xli,x2i,x3i,x4i,x5i] 
% 
% S-function to represent dynamics of 5 bladed coupled rotor- 
% fuselage model which considers only inplane degrees of 
% freedom, i.e., x and y translational fuselage degrees of freedom 
% and lead-lag rotor blade degrees of freedom. 
% 
% Explaination of variables: 

% 
% mb -> 
% M -> 
% R -> 
% el -> 
% Omega -> 
% z -> 
% Phi -> 
% c -> 
% V -> 
% Cpoly -> 
% K -> 
% Kpoly -> 
% Ks -> 

mass of blade 
effective mass of fuselage 
distance from lead-lag hinge to blade center of mass 
blade hinge offset 
rotor speed 
angle at which blade hits stops 
blade phase angle w.r.t. azimuth postion 
fuselage linear damping 
fuselage hydraulic damping 
blade damping polynomial coefficients 
effective stiffness of fuselage (landing gear stiffness) 
blade elastic spring constant polynomial coefficients 
blade stop effective spring constant 
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% xr i ->   initial rate 
% x i  ->   initial displacement 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Define input parameters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

mb=Il(l:5); 
M=I1(6:7); 
R=I2{1);Omega=I2(2);el=I2(3);z=I2(4); 
Phi=I3; 
c=I4(l:2); 
v=I4(3:4); 
Cpoly=I4(5:9); 
Kpoly=I5(l:5); 
Ks=I5(6:10); 
K=I5(11:12); 
xrXi=I6(l);xrYi=I6(2); 
xrli=I6(3);xr2i=I6(4);xr3i=I6(5);xr4i=I6(6);xr5i=I6(7); 
xXi=I6(8);xYi=I6(9); 
xli=I6(10);x2i=I6(ll);x3i=I6(12);x4i=I6(13);x5i=I6(14); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% S-function flag conditionals 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if flag == 0 

sys=[14,0,14,7,0,0]; 

x0=[xrXi,xrYi,xrli,xr2i,xr3 i,xr4i,xr5i,xXi,xYi,xli,x2i,x3 i,x4i,x5i]; 

elseif abs(flag) == 1 

t2 = mb(l)*R; 
t3 = Omega*t; 
t4 = t3+Phi(l); 
t5 = cos(t4); 
t6 = sin(x(10)); 
t7 = t5*t6; 
t9 = sin(t4); 
tlO = cos(x(10)); 
til = t9*tl0; 
tl3 = -t2*t7-t2*tll; 
tl4 = mb(2)*R; 
tl5 = t3+Phi(2); 
tl6 = cos(tl5); 
tl7 = sin(x(ll)); 
tl8 = tl6*tl7; 
t20 = sin(tl5); 
t21 = cos(x(ll)); 
t22 = t20*t21; 
t24 = -tl4*tl8-tl4*t22; 
t25 = mb(3)*R; 
t26 = t3+Phi(3); 
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t27 = cos(t26 ); 
t28 = sin(x(12)); 
t29 = t27*t28; 
t31 = sin(t26); 
t32 = cos(x(12)); 
t33 = t31*t32; 
t35 = -t25*t29-t25*t33; 
t36 = mb(4)*R; 
t37 = t3+Phi(4); 
t38 = cos(t37); 
t39 = sin(x(13)); 
t40 = t38*t39; 
t42 = sin(t37); 
t43 = cos(x(13)); 
t44 = t42*t43; 
t46 = -t36*t40-t36*t44; 
t47 = mb(5)*R; 
t48 = t3+Phi(5); 
t49 = cos(t48); 
t50 = sin(x(14)); 
t51 = t49*t50; 
t53 = sin(t48); 
t54 = cos(x(14)); 
t55 = t53*t54; 
t57 = -t47*t51-t47*t55; 
t62 = Omega A 2 
t63 = t27*t62 
t66 = t20*tl7 
t67 = x(4)Ä2; 
t70 = t25*t31; 
t72 = Omega*t28*x(5) ,- 
t74 = t42*t39; 
t75 = x(6)"2; 
t78 = t42*t62 
t81 = t38*t62 
t84 = t38*t43 
t87 = t53*t50 
t88 = x(7)-2; 
t91 = t36*t38; 
t93 = Omega*t43*x(6); 
t95 = t36*t42; 
t97 = Omega*t39*x(6); 
t99 = t49*t54; 
tl02 = = t53*t62; 
tl05 = = tl6*t62; 
tl08 = = t2*t5; 
tllO = = Omega*tl0*x(3); 
tll2 = = t9*t6; 
tll3 = = x(3)A2; 
tll6 = = t49*t62; 
tl20 = = t62*el; 
tl22 = = -v(l)*x(l)*abs(x(l))-K(l)*x(8)+t25*t63*t32-tl4*t66*t67 

2*t70*t72-t36*t74*t75-t36*t78*t39+t36*t81*t43+t36*t84*t75- 
t47*t87*t88+2*t91*tS )3-2*t95*t97+t47*t99*t88- 
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t47*tl02*t50+tl4*tl05*t21+2*tl08*tll0- 
t2*tll2*tll3+t47*tll6*t54+mb(4)*t3 8*tl20; 

tl31 = t47*t49; 
tl33 = Omega*t54*x(7); 
tl35 = t20*t62; 
tl38 = t47*t53; 
tl40 = Omega*t50*x(7); 
tl42 = tl6*t21; 
tl45 = tl4*tl6; 
tl47 = Omega*t21*x(4); 
tl49 = tl4*t20; 
tl51 = Omega*tl7*x(4); 
tl53 = t9*t62; 
tl56 = t5*t62; 
tl59 = t31*t28; 
tl60 = x(5)A2; 
tl63 = t5*tl0; 
tl66 = t2*t9; 
tl68 = Omega*t6*x(3); 
till  = t27*t32; 
tl74 = t31*t62; 
tl77 = t25*t27; 
tl79 = Omega*t32*x(5); 
tl81 = 

mb(5)*t49*tl20+mb(l)*t5*tl20+mb(2)*tl6*tl20+mb(3)*t27*tl20+2*tl31*tl33- 
tl4*tl35*tl7-2*tl38*tl40+tl4*tl42*t67+2*tl45*tl47+u(l)-2*tl49*tl51- 
t2*tl53*t6+t2*tl56*tl0-t25*tl59*tl60+t2*tl63*tll3-2*tl66*tl68- 
C(l)*x(l)+t25*tl71*tl60-t25*tl74*t28+2*tl77*tl79; 

tl86 = -t2*tll2+t2*tl63; 
tl89 = tl4*tl42-tl4*t66; 
tl92 = -t25*tl59+t25*tl71; 
tl95 = -t36*t74+t36*t84; 
tl98 = -t47*t87+t47*t99; 
t230 = u(2)+tl4*tl8*t67- 

V(2)*x(2)*abs{x(2))+2*t91*t97+t36*t81*t39+2*t70*tl79+t36*t78*t43+t3 6*t4 
4*t75+2*tl77*t72- 
C(2)*x(2)+mb(2)*t20*tl20+t2*tl56*t6+t25*t63*t28+t25*t29*tl60+2*t95*t93+ 
t25*tl74*t32+t25*t33*tl60+t36*t40*t75+2*tl49*tl47; 

t265 = 
t47*t51*t88+t47*tll6*t50+2*tl45*tl51+t2*t7*tll3+2*tl38*tl33+t47*t55*t88 
+2*tl31*tl40+2*tl66*tll0+t2*tll*tll3+t47*tl02*t54+tl4*tl05*tl7+tl4*t22* 
t67+mb(l)*t9*tl20+tl4*tl35*t21+inb(4)*t42*tl20+mb(5)*t53*tl20+iiib(3)*t31* 
tl20+2*tl08*tl68-K(2)*x(9)+t2*tl53*tl0; 

t267 = R^2; 
t269 = x(10)/v2; 
t271 = 0; 
t274 = abs(x(10) ) ; 
t275 = t274A2; 
t276 = t275*t274; 
t287 = t269A2; 
t299 = el*R; 
t302 = -t269*Kpoly(4)*t271/2-x(10)*Kpoly(2)*t276- 

x(10)*Kpoly(4)*t274-x(3)*Cpoly(2)*t276-x(3)*Cpoly(4)*t274- 
x(3)*Cpoly(3)*t269-x(3)*Cpoly(l)*t287+u(3)- 
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3.E0/2.E0*t269*Kpoly(2)*t275*t271-x(10)*Kpoly(5)-x(3)*Cpoly(5)- 
3*t287*x(10)*Kpoly(l)-2*t269*x(10)*Kpoly(3)-mb(l)*t62*t299*t6; 

t305 = x(ll)A2; 
t306 = t305A2; 
t318 = abs(x(ll)); 
t319 = t318A2; 
t320 = 0; 
t324 = t319*t318; 
t336 = u(4)-x(4)*Cpoly(l)*t306-3*t306*x(ll)*Kpoly(l)- 

2*t305*x(ll)*Kpoly(3)-x(ll)*Kpoly(5)-x(4)*Cpoly(5)-mb(2)*t62*t299*tl7- 
3.E0/2.E0*t305*Kpoly(2)*t319*t320-x(4)*Cpoly(2)*t324- 
x(ll)*Kpoly(2)*t324-x(ll)*Kpoly(4)*t318-t305*Kpoly(4)*t320/2- 
x(4)*Cpoly(3)*t305-x(4)*Cpoly(4)*t318; 

t339 = x(12)A2; 
t340 = t339A2; 
t345 = abs{x(12)); 
t348 = t345A2; 
t349 = t348*t345; 
t356 = 0; 
t370 = u(5)-x(5)*Cpoly(l)*t340-x(5)*Cpoly(3)*t339- 

x(5)*Cpoly(4)*t345-x(12)*Kpoly(2)*t349-x(12)*Kpoly(4)*t345- 
x(5)*Cpoly(2)*t349-t339*Kpoly(4)*t356/2-2*t339*x(12)*Kpoly(3)- 
3.E0/2.E0*t339*Kpoly(2)*t348*t356-mb(3)*t62*t299*t28-x(5)*Cpoly(5)- 
x(12)*Kpoly(5)-3*t340*x(12)*Kpoly(l); 

t372 = x(13)A2; 
t374 = abs(x(13)); 
t375 = t374A2; 
t376 = 0; 
t381 = t372A2; 
t390 = t375*t374; 
t404 = u(6)-3.E0/2.E0*t372*Kpoly(2)*t375*t376-x(13)*Kpoly(5)- 

x(6)*Cpoly(5)-3*t381*x(13)*Kpoly(l)-2*t372*x(13)*Kpoly(3)- 
mb(4)*t62*t299*t39-x(6)*Cpoly(2)*t390-x(6)*Cpoly(4)*t374- 
x(13)*Kpoly(4)*t374-t372*Kpoly(4)*t376/2-x(13)*Kpoly(2)*t390- 
x(6)*Cpoly(3)*t372-x(6)*Cpoly(l)*t381; 

t406 = x(14)A2; 
t408 = abs(x(14)); 
t409 = t408A2; 
t410 = 0; 
t421 = t409*t408; 
t431 = t406A2; 
t438 = u(7)-3.E0/2.E0*t406*Kpoly(2)*t409*t410-x(7)*Cpoly(4)*t408- 

mb(5)*t62*t299*t50-t406*Kpoly(4)*t410/2-x(14)*Kpoly(2)*t421- 
x(14)*Kpoly(4)*t408-x(7)*Cpoly(2)*t421-x(7)*Cpoly(3)*t406- 
x(7)*Cpoly(5)-x(14)*Kpoly(5)-3*t431*x(14)*Kpoly(l)- 
2*t406*x(14)*Kpoly(3)-x(7)*Cpoly(l)*t431; 

B(l,l) = mb(4)+inb(5)+mb(l)+nib(2)+mb(3)+M(l) ; 
B(l,2) = 0; 
B(l,3) = tl3; 
B(l,4) = t24; 
B(l,5) = t35; 
B(l,6) = t46; 
B(l,7) = t57; 
B(l,8) = tl22+tl81; 
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B (2 ,1) 
B (2 ,2) 
B (2 ,3) 
B (2 r4) 
B [2 5) 
B [2 6) 
B (2 7) 
B [2 8) 
B 3 1) 
B 3 2) 
B 3 3) 
B 3 4) 
B 3 5) 
B 3 6) 
B 3 7) 
B 3 8) 
B 4 1) 
B 4 2) 
B 4 3) 
B 4 4) 
B 4 5) 
B 4 6) 
B 4 7) 
B 4 8) 
B 5 1) 
B 5 2) 
B 5 3) 
B 5 4) 
B 5 5) 
B 5 6) 
B 5 7) 
B 5 8) 
B 6 1) 
B 6 2) 
B 6 3) 
B 6 4) 
B 6 5) 
B 6 6) 
B< 6 7) 
B{ 6 8) 
Bl 7, 1) 
B< 7, 2) 
B( 7, 3) 
Bl 7, 4) 
B( 7, 5) 
B| 7, 6) 
B| 7, 7) 
Bl 7, 8) 

0; 
mb(l)+nib(2)+inb(3)+itib(4)+mb(5)+M(2) ; 
tl86; 
tl89; 
tl92; 
tl95; 
tl98; 
t230+t265; 
tl3; 
tl86; 
mb(l)*t267; 
0; 
0; 
0; 
0; 
t302; 
t24; 
tl89; 
0; 
mb(2)*t267; 
0; 
0; 
0; 
t336; 
t35; 
tl92; 
0; 
0; 
mb(3)*t267; 
0; 
0; 
t370; 
t46; 
tl95; 
0; 
0; 
0; 
mb(4)*t267; 
0; 
t404; 
t57; 
tl98; 
0; 
0; 
0; 
0; 
mb(5)*t267; 
t438; 

% Calculate derivatives 

[m,n]=size(B); 
A1=B(:,l:n-l); 
fl=B(:,n); 
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sys=zeros(1,2*m); 
sys(l:7)=Al\fl; 
sys(8:14)=x(l:7); 

% Output states 

elseif abs(flag) == 3 

sys(l:14)=x; 

else 

sys = []; 

end 
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